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Abstract— Network middleboxes provide the first line of
defense for enterprise networks. Many of them typically inspect
packet payload to filter malicious attack patterns. However, the
widespread use of end-to-end cryptographic protocols designed
to promote security and privacy, either inhibits deep packet
inspection in the network or forces enterprises to use solutions
that are not secure. This article introduces a complete frame-
work for building secure and practical network middleboxes,
called EVE, which enables visibility over encrypted traffic. EVE
securely processes encrypted traffic using a combination of
hardware-based trusted execution and software security technol-
ogy. For enhanced programmability and security, EVE provides
a high-level programming interface based on the Rust language.
The high-level APIs of EVE provide security and significantly
ease the development effort by hiding the details of cryptographic
operations, enclave processing, TCP reassembly, and out-of-band
key sharing. Our evaluation shows EVE supports diverse use
cases with multiple encryption protocols in a secure fashion while
delivering high performance.

Index Terms— Network middleboxes, encryption protocols,
trusted execution environment (TEE), deep packet inspection.

I. INTRODUCTION

NETWORK middleboxes serve as the first line of
defense for many public-facing Internet applications

and enterprise networks. A wide range of security-related
in-network functions that inspect network traffic, such as
web firewalls [42] and intrusion detection/prevention systems
(IDS/IPS) [50], [60] have been deployed by enterprises and
organizations. However, the widespread use of encryption
protocol, such as SSL/TLS, renders functionalities of these
network middleboxes useless because they cannot perform
deep packet inspection (DPI) on encrypted traffic. This trend
forces network operators and users to make an undesirable
choice between end-to-end privacy and security [57].
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In an attempt to address the problem, prior works take three
main approaches: 1) modify TLS to explicitly include middle-
boxes during a handshake [44], [45]; or 2) use cryptographic
schemes that allow direct inspection on the encrypted traf-
fic [57]; or 3) utilize hardware-based trusted execution environ-
ments (TEEs) to securely decrypt encrypted traffic [10], [11],
[18], [20], [44], [52], [64]. However, the first two approaches
have critical concerns about deployment and performance.
Modifying the TLS protocol [45] requires changes to existing
middleboxes, server, and client applications. Leveraging new
cryptographic schemes, such as searchable [57] or homo-
morphic encryption [17], is notoriously slow for practical
purposes. Thanks to a recent innovation in commodity TEEs,
an adoption of hardware-based TEE has probably become
the most promising option among the proposed approaches.
In particular, Intel Software Guard eXtensions (SGX), x86
ISA extensions for security purpose, delivers native perfor-
mance and supports multi-threading, which makes it practical
for performance-critical applications, such as middleboxes.
In fact, a new research trend that leverages Intel SGX on
middlebox systems has begun to emerge by several recent
studies [11], [18], [20], [34], [44], [52], [58], [64].

However, handling encrypted traffic inside SGX enclaves
in a secure fashion involves non-trivial challenges that place
a heavy burden on middlebox developers. First, processing
encrypted traffic involves reassembling TCP traffic, under-
standing the details of cryptographic protocols to enable
key sharing, in-middlebox decryption, and multiplexing flows
within encryption tunnels. A lack of programming abstraction
on such operations enforces developers to struggle with the
low-level implementations.

Second, existing SGX-enabled middleboxes have limita-
tions in flexibility to embody diverse network functions in
various network conditions and encryption protocols. Exist-
ing approaches that utilize SGX can be a starting point to
implement secure network functions that handle encrypted
traffic. However, each of them has several constraints: being
specialized for a single protocol and cipher suite only [44],
[64]; or relying on a trustworthy gateway [10], [11], [52] for
encrypted traffic decryption; or assuming unusual deployment
model [18]. Moreover, none of the above approaches can
handle nested encryption which is frequently appeared in
enterprise network [46], [53] (e.g., TLS-encrypted traffic on
top of VPN tunnel) nor datagram-based encryption such as
Datagram Transport Layer Security (DTLS) which is gaining
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popularity within Internet of Things (IoT) applications [33],
[70]. Such limitation leads to significant engineering efforts for
implementing a variety of network middleboxes that handle
encrypted traffic.

Finally, making the system secure presents another set
of challenges. Even though SGX provides a hardware-based
memory protection, attackers can still exploit software vulner-
abilities (e.g., out-of-bounds access) inside the secure mem-
ory region, called an enclave [35], [37], [56]. Securing an
enclave program is especially challenging because middlebox
developers, like others, often utilize third-party libraries [30],
[44], [64] that may contain vulnerabilities. For example, when
a middlebox software, running inside an SGX enclave, uses
an unpatched version of OpenSSL [47] that has Heartbleed
vulnerability [12], TLS session key can be leaked (§VI-D).
To address this, recent work [52] leverages a safe language,
Rust [40], to mitigate the potential vulnerability in the enclave
module. However, it is non-trivial for middlebox developers to
port existing third-party libraries to Rust, while preserving the
functionality and performance.

To address the issues, we present EVE,1 a complete platform
for building a secure and practical middlebox that handles
encrypted traffic. EVE utilizes innovations in hardware-based
trusted execution and provides programming abstractions
for middlebox developers to handle encrypted traffic in a
secure manner. We leverage Intel Software Guard eXtensions
(SGX) [41] that protects program’s code and data inside a
secure container. Unlike existing approaches that utilize SGX,
we provide high-level abstractions for enabling visibility over
encrypted traffic and relieving engineering efforts of adopting
encryption protocols, and ensure SGX-aware memory safety
all at the same time. As a result, the system can support
diverse use cases involving encryption and allows developers
to use third-party libraries in a more secure fashion. Finally,
our system ensures the integrity of middleboxes running on a
remote platform.

In summary, we make four key contributions:

• EVE’s programming interface abstracts away the specifics
of encrypted flow processing and in-enclave flow decryp-
tion for developers to express operational policies as if
they are dealing with plain-text data.

• EVE supports diverse use cases and delivers high per-
formance. EVE programming abstraction allows us to
support multiple encryption protocols including TLS,
DTLS, VPN tunnels and nested encryption. We extend a
user-level TCP stack for high performance and flexibility.

• EVE provides protection against memory safety attacks.
To mitigate memory safety attacks on enclave code [62],
we use high-level APIs in a safe language, Rust [40], and
the state-of-the-art boundary checking mechanism [35].

• EVE coherently integrates large systems, including
DPDK [23], mOS [26], SGXBounds [35], SGX-
Rust [55], OpenSSL [47], and OpenVPN [48], to achieve
the goals.

1EVE stands for "Enabling Visibility over Encrypted traffic".

Our evaluations show that EVE supports diverse use cases,
provides high performance, and enhances the security of
middleboxes.

II. BACKGROUND AND MOTIVATION

A. Background

Intel SGX [41] provides a hardware-based mechanism
to ensure the integrity and confidentiality of applications. It
allows a developer to protect security-sensitive data (e.g.,
private keys) and operations inside a secure memory region
called enclave. An enclave is mapped to the enclave page
cache (EPC), which is a hardware encrypted address space
in main memory access-controlled by the CPU. The content
of EPC is only decrypted inside the CPU package using
processor-specific keys. Thus, even the privileged software
(e.g., OS and hypervisor) cannot access the enclave content,
ensuring isolated execution. SGX also provides remote attes-
tation that allows a service provider to verify the integrity of
a remote program running on an SGX CPU [2].

mOS framework: EVE utilizes the mOS [26] framework
to perform I/O and TCP processing outside the enclave. mOS
is a reusable networking stack for middlebox development
that provides high performance by using a user-level TCP
stack [27] and Intel DPDK [23]. It abstracts management
of TCP state of individual connections and provides an
event-driven interface to manage network flows in a flexible
manner.

B. Challenges and Requirements

Although SGX offers hardware-based security primitives,
building a secure middlebox for handling encrypted traffic
involves many challenges. A naïve adoption of SGX is not
sufficient for a number of reasons.

High-level abstractions for enabling visibility: Build-
ing a secure middlebox module requires expertise in mul-
tiple domains, such as software security, cryptography,
enclave programming, encryption protocol, and network
packet processing. System components must be well designed
with appropriate abstractions that encapsulate implementation
details. A secure key sharing mechanism must also be in place.
While existing works [26], [32] provide useful abstractions for
middlebox programming, they do not cover enclave program-
ming and specifics of encrypted traffic decryption, and they
are not designed for a strong threat model that EVE supports.

Flexible protocol support: The middlebox framework
needs to support a variety of encryption protocols and use
cases and be deployable in a variety of network environ-
ments. Several studies [1], [61] show that tunneling encryp-
tion and end-to-end encryption have different benefits and
limitations. End users or network services can combine both
of the encryption protocols to enhance their privacy and
network security [21]. For example, an end host can generate
TLS-encrypted traffic to an enterprise network which uses
VPN tunnel service. In this case, the middlebox located
in the middle of VPN tunnel should be able to process
the traffic in the presence of nested encryption (TLS over
VPN tunnel). Also, datagram-based encryption protocols such
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as DTLS has become popular for resource-constrained IoT
applications [33], [70].

To support multiple use cases, the design should be
protocol-independent. For example, a design that extends TLS
such as mbTLS [44] would not be applicable to a VPN
connection that uses a pre-shared secret or other key agreement
protocols. Finally, the cost of deployment should be low. The
middlebox deployment should avoid the changes of client
system or the legacy protocols (e.g., SSL/TLS) that often take
a considerably long time.

SGX-aware memory safety: Enclave programming intro-
duces challenges in security. SGX cannot prevent attacks that
stem from vulnerabilities within the enclave code, such as out-
of-bounds memory accesses [35], [56]. Such attacks can leak
security-sensitive data including plain-text payload or session
keys. One may combine SGX with a safe language, such as
Rust [40] that does not allow pointer arithmetic and performs
boundary checking to prevent out-of-bounds read/write at
run-time, similar to SafeBricks [52]. However, it is often
difficult to build a complex system without the support of
legacy ecosystem that has a large code base. For example, the
Rust OpenSSL port [54] only provides Rust APIs internally
connected to the original OpenSSL library written in C. In
summary, the code is not safe unless all system components
running inside the enclave are protected, but porting the entire
library is non-trivial.

III. OUR APPROACH

To satisfy the requirements (§II-B), EVE takes three main
approaches. First, EVE provides high-level Rust APIs that ease
the programming efforts and allow developers to program their
own operational policy of middleboxes. It enables developers
to build a complex middlebox system without knowing the
details of utilizing SGX, flow management, and encryption
protocols.

Second, to handle diverse use cases in a variety of network
environments such as nested encryption with high perfor-
mance, we design out-of-band key sharing, flow-key asso-
ciating module and queue-engine pipeline (§IV-A). Note we
design each EVE component to be protocol-independent, so
deploying EVE does not require any changes in client system
and legacy protocols. This reduces the deployment cost of
EVE.

Finally, EVE supports memory safety for SGX enclave. We
encourage the use of a safe language inside the enclave by
providing Rust APIs. For legacy code, we employ enclave
hardening by applying SGXBounds [35], a state-of-the-art
software-based address boundary checking mechanism for
enclave programs. It mitigates the potential memory vulner-
abilities, such as stack smashing and Heartbleed attack [12],
in third-party libraries implemented with an unsafe language
(e.g., C/C++).

Deployment model and assumption. The EVE framework
consists of a controller, a middlebox, and an end server.
Figure 1 shows our deployment model. Our basic assumption
is that network operators cooperate with servers to deploy
their middlebox on an SGX-enabled third-party platform for

Fig. 1. Deployment model of EVE.

Fig. 2. System components of EVE.

protecting the servers. The controller manages the middle-
box configuration and provisions a ruleset to the middlebox
through a secure channel provided by SGX. After the ruleset is
loaded in EVE middlebox, the end server verifies the integrity
of the middlebox and the ruleset. Detailed attestation and rule
provisioning procedure are explained in §IV-E. We assume that
the middlebox platform, except for the SGX hardware and the
enclave, is untrusted.

Threat model. Upon our deployment model, we assume
attackers whose goal is to obtain the confidential information
of a middlebox such as plain-text payloads of encrypted traffic,
session secrets, and DPI rulesets. We assume that the attackers
are capable to control privileged system software (e.g., OS and
hypervisor), and hardware components (e.g., memory and
I/O bus), except the CPU package. In addition, the attackers
can exploit vulnerabilities in an enclave code (e.g., such as
vulnerabilities in the cryptographic protocols [12]) unlike prior
systems [30], [44], [58], [63], [71]. However, we do not
consider side-channel attacks on SGX [19], [38], [66], [67],
[69], including page fault [66], [69], cache [19], [43], branch-
prediction [38] and synchronization [67] side-channels. We
note that side-channel attacks and mitigation strategies on
SGX are an active area of research [7], [15], [22], [56], [59],
[71]. Also, we want to prevent attackers from compromising
the rulesets to avoid DPI checking during the middlebox oper-
ation. Finally, we assume the end server is trusted. Optionally,
the server can also utilize SGX, in which case the server
assumes the same trust model as the middlebox.

IV. EVE DESIGN

EVE handles encrypted traffic in two phases, as shown
in Figure 2. In the preprocessing phase, EVE reassembles

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on January 04,2021 at 02:09:31 UTC from IEEE Xplore.  Restrictions apply. 



2730 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 6, DECEMBER 2020

TABLE I

SHARED SESSION CONTEXT

encrypted payloads before packet processing. To support state-
ful flow-level processing, EVE leverages mOS [26], a frame-
work that extends a user-level TCP stack [27] for middleboxes.
The preprocessing phase that handles encrypted payloads,
including the mOS framework, is conducted in the untrusted
region in an effort to reduce the trusted computing base (TCB)
and carefully utilize the limited EPC memory.2 This does not
leak private data because the reassembled payload still has the
same security level as end-to-end encryption (e.g., TLS).

In-enclave processing occurs in the inspection phase. The
payload is decrypted and the EVE DPI module inspects the
payload for middlebox processing (e.g., exact matching of
IDS), ensuring that the plain-text never leaves the enclave.
EVE’s enclave region consists of four components. 1) The
out-of-band key sharing module securely retrieves a session
key from an end server. 2) The flow-key associating module
associates a flow with its decryption context that includes a
decryption key and a cipher suite. 3) The decryption engine
uses a queue-engine pipeline that performs decryption in
multiple stages to handle nested encryption. 4) The inspection
module conducts pattern matching based on the rules and
performs actions (e.g., send alert) based on the result.

A. In-Enclave Components

We now describe the in-enclave components in detail.
Secure out-of-band key sharing. EVE middlebox retrieves

session keys from servers who perform remote attestation and
build a secure channel with the EVE middlebox. The SGX
remote attestation ensures that EVE middlebox is running on
an SGX platform and the integrity of its code is valid. EVE
also authenticates the server and checks the validity of the
server’s certificate. When the attestation and authentication are
successful, EVE middlebox and the server establish a TLS
session which is terminated inside the EVE enclave to ensure
shared secret is not exposed to an untrusted party. The server
shares its per-session context shown in Table I„ including the
shared secret. If the attestation fails, the end server disconnects
the secure channel with the target middlebox without sharing
the key.

Flow-key associating module. Note the out-of-band chan-
nel is established once for each server, but key sharing occurs
for each session asynchronously. EVE middlebox needs to
associate the session key upon arrival of encrypted flow. For
this, EVE uses the 5-tuple to distinguish incoming flows. EVE
stores the flow tuple in the preprocessing phase. Then, the
server sends the flow tuple with the session secrets during

2The maximum EPC size supported by hardware is less than 128MB.

Fig. 3. Handling nested encryption in EVE.

out-of-band key sharing. Finally, EVE matches the flow tuple
to associate the flow with the session key to decrypt it.

In the presence of nested encryption, EVE performs multiple
out-of-band key sharing with servers. Each server shares its
session key and flow tuple with EVE through the out-of-
band secure channel. Then, EVE stores the tunnel information,
session key, and the inner flow tuple together, similar to a
key-value store. We note that EVE needs to keep the tunnel
information to handle nested encryption. Assume that the
end-to-end traffic is encrypted with TLS over VPN tunnels.
If two flows have the same flow tuple and arrive through
different VPN tunnels, EVE cannot associate each flow with
the corresponding session key only using a flow tuple from the
end server. To address this problem, we modify a VPN server
and an end server, allowing EVE to store both inner and outer
flow tuples, and session key together. During the connection
establishment, the VPN server sends its flow tuple to the end
server. The end server then transmits the received tuple with
its flow tuple and session key to EVE when performing out-of-
band key sharing. This enables EVE to identify unique session
key for each flow.

Decryption engine automates the process of decryption
and flow management. EVE allows programmers to asso-
ciate a decryption queue with a flow. When this is done,
EVE’s flow management directs reassembled payload of the
incoming flow into the queue. The decryption engine then
fetches the reassembled payload by the unit of encryption
and performs decryption using a session key shared from the
end server. Decryption queue and its pipeline model are one
of the key abstractions of EVE. The queue-engine pipeline
model simplifies the process of handling nested decryption
as Figure 3 shows. Supporting nested decryption amounts
to directing the output of the decryption engine to the next
decryption queue (see §IV-B and §VI-A for more details).

Payload inspection. EVE supports both exact string pattern
matching and regular expression matching on plain text inside
the enclave to protect the plain text from untrusted software
running on the middlebox host. EVE provides a programming
interface to choose the algorithm among multiple imported
pattern matching libraries. By default, we provide DFC [8]
pattern matching algorithm that has a small memory footprint
and PCRE2 [51] regular expression matching library within
the SGX enclave.
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Fig. 4. The overview of EVE abstraction.

B. EVE Programming Abstraction

The key abstraction of EVE is "explicit management of
flow context" in the presence of end-to-end encryption. Figure
4 shows the overview of EVE abstraction for encrypted
traffic decryption and retrieving decrypted flow context. The
EVE abstraction represents a decrypted flow descriptor as
a decryption structure (e.g., TLS struct). EVE automatically
tracks incoming traffic and stores the per-flow state in a flow
context structure after decryption. The flow context structure
includes decrypted packet header and payload, cipher suite,
and total packet size. Each flow descriptor points to the
flow context and a decryption key associated with the flow.
Also, EVE decryption queue provides a common interface to
receive encrypted payloads from incoming traffic and inner
flow. In result, EVE abstraction enables developers to avoid
low-level implementations, and handle multiple encryption
protocols with a common abstraction. Note the state-of-the-
art SGX-based middleboxes that handle encrypted traffic do
not consider this. Figure 5 describes step-by-step details for
monitoring encrypted traffic in EVE. We now describe how
our programming abstraction has advantages in extensibility
for each step.

Packet-level processing. EVE internally supports
pre-processing on encrypted traffic for both TCP- and
UDP-based encryption protocols. To achieve stateful TCP
processing which is an essential requirement to handle
TCP-based encryption, EVE utilizes mOS [26] that provides
a stateful TCP stack. In addition, we extend mOS [26]
internal system to support UDP packet. Note that none of
existing SGX-based middlebox systems supports UDP-based
protocols and some of them [10], [64] even do not provide
stateful TCP processing.

Protocol-independent programming abstraction helps in
building APIs flexible to handle various encryption protocols.
First, we abstract flow reassembly by designing EVE to use the
same encrypted payload reassembly buffer, regardless of the

TABLE II

REUSABLE EVE COMPONENTS AND EXTRA LINES OF CODE (LOC) FOR
VPN AND DTLS ADOPTION

type of encryption protocols. We observe that most encryption
protocols, such as TLS and VPN, contain record sizes. EVE
internally checks if packets are sufficiently gathered in the
reassembly buffer by referring the record size in the header.

Second, our programming abstraction dramatically reduces
an effort for sharing session keys. EVE basically establishes
a secure channel to receive secrets from a server for building
a session decryption context. This is a protocol-independent
operation, which means that the corresponding API is reusable.
For example, when EVE has an out-of-band key sharing
module for TLS secrets, a developer could easily extend it to
receive VPN secrets by changing the receiving secret size only.
Note that protocol specific key sharing approaches such as
mcTLS [45] and mbTLS [44] that rely on handshake message
for the key sharing cannot deliver such extensibility.

In addition, the internal enclave code base of EVE
reduces implementation effort for further extension. We port
widely-used cryptographic and HMAC operations of OpenSSL
and OpenVPN libraries in EVE enclave to support TLS,
DTLS and VPN protocols, respectively. This lowers the bur-
den of implementing decryption logic and ocall wrappers
for SGX-unsupported functions (e.g., system calls) used in
cryptographic libraries. Finally, deep packet inspection module
is protocol-independent as they perform a pattern matching on
plain-text payloads.

Quantifying engineering effort. To quantify the imple-
mentation effort when extending EVE to support an addi-
tional encryption protocol, we estimate the lines of code
while importing VPN and DTLS protocol. Note that we have
sequentially expanded EVE to support TLS, VPN and DTLS
protocol. We compare the baseline EVE implementation which
only supports TLS protocol with VPN-extended version and
DTLS-extended version. To build the baseline EVE, we imple-
ment 5,450 LoC, including OpenSSL library. To support VPN
and DTLS, we extend EVE internals by only adding 314 LoC
(5.76% of the baseline) and 317 LoC (5.82% of the baseline),
respectively.

Table II summarizes EVE reusable components and addi-
tional effort to achieve support for new encryption protocols.
Based on our experience of porting VPN and DTLS proto-
cols, to adopt a new encryption protocol, we only need to
1) implement logic of parsing the encryption protocol header
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Fig. 5. The process to monitor encrypted traffic for EVE middleboxes.

to extract a record size, 2) change the receiving secret size,
and 3) combine cryptographic function in libraries. Note
that most EVE abstractions, including network I/O, flow
management, payload reassembly, and DPI, can be reused
without modifying any EVE internals. This means that EVE
has a flexible programming abstraction to support multiple
encryption protocols.

C. Programming Model and API

Some middlebox developers might prefer to utilize tra-
ditional and well-known programming interface such as
Click-based APIs [10], [32], [64]. However, as NetBricks [49]
pointed out, a Click module [32] is not flexible for handling
diverse use cases, so the developers need to implement new
modules or low-level packet processing systems themselves.
For example, ShieldBox [64] extends legacy framework, Click
router [32], but does not support stateful flow-level packet
processing due to the fundamental limitation of its Click
modules. Therefore, substantial engineering efforts would be
required to support TCP-based encryption protocols on Shield-
Box such as implementing TCP networking stack.

In contrast, EVE supports flexible "event-driven" program-
ming model with helpful middlebox APIs. As mOS [26]
demonstrates useful event systems for monitoring TCP flows,
EVE simplifies the processing of various encrypted flows.
The execution of EVE module is determined by two core
events: 1) a new arrival of encrypted flow (flow-in event) and
2) completion of a decryption unit (decryption-done event).
For each event, developers can provide user-defined callbacks
to implement their own logic using a combination of EVE
APIs. EVE provides a total of 11 data structures and 38 EVE
APIs to handle flow processing and payload inspection poli-
cies. Table III shows the key data structures and EVE APIs
that manipulate them, classified into four categories.

Flow management API provides flow context information,
such as packet header, count, payload. Also, it supports
convenience functions for filtering flows that match certain
conditions based on the flow context information. This helps
developers to easily specify their per-flow policies in a flow
information-aware fashion.

Decryption API provides an interface to the decryption
queue. Using set_queue API, a developer can associate
a decryption queue with a specific decryption scheme. EVE
then automatically collects the payloads of the associated flow
and retrieves the shared secret from end servers. Then, the
corresponding decryption engine deciphers the payload. In
addition, developers can retrieve the decryption scheme of
both tunnel and inner flows in the presence of the nested

Fig. 6. The interaction between EVE modules.

encryption (TLS over VPN tunnels), using get_prev and
get_queue_type APIs. This enables developers to manage
in-tunnel flows with different trusted level. Based on the queue
association policy, EVE internally creates a queue-engine
pipeline, and EVE runtime drives the pipeline.

Payload inspection API. EVE provides APIs to per-
form payload inspection on plain-text. One can state the
execution of exact string or regular expression matching with
rule_match API. In addition, we provide an extensible set
of rule matching algorithms (e.g., DFC [8] and PCRE2 [51])
in the enclave.

Configuration API is used to specify the middlebox con-
figuration and callback registration. A developer can specify
the ruleset for packet inspection with load_ruleset API.
When the ruleset is requested by the API, EVE internally
performs rule attestation with the controller and loads the
ruleset if it successfully passes (§IV-E). The set_callback
API registers event callbacks of each built-in event. Finally,
define_event API enables developers to define a custom
event that is triggered when a user-defined filter condition
satisfied. For example, a developer can create an event that
is triggered only when the destination port number is 443.

D. Enclave Memory Safety

As shown in §II-B, EVE is required to mitigate the leak-
age of enclave memory contents by exploiting pointers in
C/C++ codes. To thoroughly explore possible enclave code
vulnerabilities, we classify EVE enclave code into three parts:
1) high-level APIs, 2) third-party libraries code, and 3) low-
level implementations of flow/packet processing. We design
EVE security components by considering the characteristics of
each enclave code part. Figure 6 shows the interaction between

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on January 04,2021 at 02:09:31 UTC from IEEE Xplore.  Restrictions apply. 



HAN et al.: SECURE MIDDLEBOX FRAMEWORK FOR ENABLING VISIBILITY OVER MULTIPLE ENCRYPTION PROTOCOLS 2733

TABLE III

REPRESENTATIVE DATA STRUCTURES AND EVE APIS SUMMARIZED BY FOUR CATEGORIES

EVE modules and the location of EVE security components.
We explain each security component.

Secure programming interface. EVE framework sup-
ports secure and flexible programming interface by providing
secure APIs implemented with Rust [40]. Rust guarantees
language-level safety, such as strict out-of-bounds access
checking for array indexing and use-after-free prevention.
Also, EVE APIs hide the unsafe access to C/C++ structures,
but provide parsed flow data in complete Rust structures.
Therefore, EVE programming interface helps the developers
with implementing their secure EVE application.

Hardening library code. EVE uses several C/C++ code
for its enclave code including third-party libraries which
may contain vulnerabilities themselves. For example, the
OpenSSL [47] contains about 244 k lines of code, which means
that TCB might have potential vulnerabilities, such as out-of-
bounds memory read/write, caused by mis-implementations.

A straight forward approach to mitigate such vulnerabil-
ities is to convert the libraries into Rust. However, it is
often impractical to convert the entire code base. One of
the reasons is porting performance-critical code is espe-
cially non-trivial. For example, many OpenSSL APIs (e.g.,
ssl3_read_bytes) use low-level pointer arithmetics, but
converting them to Rust involves redesigning data structures
and rewriting the algorithms.

Instead of converting existing code base to Rust, EVE
hardens the enclave code implemented in unsafe languages
(e.g., C/C++). This allows middlebox developers to
utilize the legacy code base in a more secure manner. For
this, we integrate SGXBounds [35], the state-of-the-art
memory protection scheme for SGX, that uses tagged
pointers to prevent out-of-bounds access and exploits
hardware features of SGX for efficiency. To integrate
SGXBounds, we provide wrappers for each EVE’s in-enclave
C/C++ components that takes pointers as parameters,
including libc, OpenSSL, and OpenVPN libraries, in a
reusable fashion. Specifically, we provide 7 memory-related
wrappers, 3 network-related wrappers, and 12 decryption-
related wrappers that EVE uses. The underlying

SGXBounds run-time then prevents out-of-bounds memory
accesses.

Flow-level memory isolation. EVE isolates memory for
a flow processing by providing a dedicated enclave thread.
To maximize CPU utilization, middleboxes generally utilize
multiple threads to concurrently process incoming flows. How-
ever, utilizing an enclave thread pool like Talos approach [4],
demands delicate thread synchronization code for accessing
shared in-enclave structure, which increases the complexity
of program and the risk of mis-implementation. For example,
concurrent access to shared TLS buffer without correct thread
locking might incur the corruption or leakage of decrypted
flow data.

Mitigating the above problem, EVE preserves run-to-
completion threading model [26] and provides per-core struc-
tures for secure in-enclave threading. EVE associates each flow
with a specific core. Each core then processes the associated
flow utilizing per-core structures, such as TLS/VPN decryption
queues, which are allocated for the core. This guarantees
flow-level memory isolation because each concurrent flow
processing uses separated memory space. In addition, the
flow-level memory isolation is beneficial for core scalability
compared to the thread-pool approach [4] as it does not require
enclave spinlocks for thread synchronization (§VI-B).

E. Rule Provisioning and Deployment

Rule provisioning. To prevent attackers from modifying
the rules, EVE performs secure rule provisioning and allows
an end server to verify the integrity of ruleset. As we illus-
trated in Figure 1, an EVE middlebox, an end server, and
a controller participate in the rule attestation. Before EVE
middlebox requests a ruleset from the controller, the controller
performs remote attestation to check the code integrity of the
middlebox. If it successfully passes module attestation, the
controller chooses the requested ruleset and provisions it to
the middlebox. Then, both the middlebox and the controller
calculate the hash of the ruleset and send it to an end server
through an out-of-band secure channel. Finally, the end server
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TABLE IV

LINES OF CODE FOR EVE

compares the hash to verify the integrity of the ruleset. If
hashes are equivalent, the rule attestation is done and the
middlebox is ready to perform packet inspection. This ensures
that the EVE middlebox securely retrieves the unmodified
ruleset from the controller. To keep the rules private, EVE
keeps them in the enclave. When it needs to store them to the
file system of the middlebox platform, EVE seals them using
the SGX hardware key using the SGX sealing feature [2].

Updated components. In addition to the middlebox,
EVE requires server updates to support out-of-band key
sharing. To streamline this process, we provide modified
OpenSSL/OpenVPN libraries. Existing applications can sim-
ply relink our updated library, and applications that use
OpenSSL/OpenVPN can readily benefit from EVE. Note EVE
does not change legacy protocols (e.g., TLS, DTLS and VPN)
and client applications. Thus, the cost of deployment to adopt
EVE is relatively small compared to existing approaches [18],
[44], [52].

V. IMPLEMENTATION

We develop EVE by using Intel SGX Linux SDK 2.5 [24]
and Rust-SGX-SDK [55]. DPDK version is 18.02. Table IV
shows the lines of code (LoC) for each EVE component
and 6.38K LoC are changed to implement our system in
total. We extend mOS [26] internal system to detect a UDP
packet arrival event and parse the UDP header. We modify
the SSL and OpenVPN libraries to enable out-of-band key
sharing and support both dynamic key agreement and static
shared key. To support dynamic key agreement, we modify
the TLS handshake implementation in OpenSSL. For example,
we modified ssl_fill_hello_random in EVE middle-
box to use nonces provided by the end server. EVE then
generates TLS context that has the same session key with the
end server during the TLS handshake procedure. For sharing
VPN static keys, we modify OpenVPN. During initialization,
EVE receives the static key to enclave memory through the
out-of-band secure channel with the VPN server.

We port OpenSSL-1.0.2l [47] and OpenVPN-2.4.3 [48]
into an SGX enclave instead of using the Intel SGX-SSL
library [25]. The Intel SSL library offers crypto APIs but
not the TLS. For example, it does not provide TLS APIs

Fig. 7. Use case for nested encryption (TLS over VPN tunnel).

Fig. 8. EVE callback functions for DPI on nested encryption.

(e.g., SSL_read and SSL_write). In contrast, our library
offers full TLS and DTLS features and currently sup-
ports 8 different cipher suites in TLSv1.2 and a VPN cipher
suite that uses 2048-bit static key.

Finally, we port the DFC [8] exact string matching algorithm
and a PCRE2 [51] regular expression matching library into the
enclave code. We modify about 0.97% (22 out of 2271 LoC) of
the original DFC code to port it to the EVE module. We release
our SGX-OpenSSL and SGX-DFC port as open source.3

SGX Optimizations. We modify SGX SDK library func-
tions to enhance the decryption performance of EVE. Basi-
cally, EVE frequently calls memmove during TLS decryption
to shift payload data in the TLS record buffer, following
the current OpenSSL implementation. As previous study [68]
pointed out the performance issues raised by the naïve imple-
mentation of stdlib functions in SGX SDK, the provided
memmove function significantly degrades the decryption per-
formance.4 To address this, we port the recent glibc memmove
that uses Advanced Vector Extensions (AVX) [14] in the EVE
enclave. In result, EVE improves TLS decryption throughput
by up to 400.80% in our evaluation (§VI-C).

VI. EVALUATION

Our evaluation answers five questions:

• Does EVE API provide useful abstractions and support
diverse use cases?

3Each code is available at https://github.com/sparkly9399/SGX-OpenSSL
and https://github.com/sparkly9399/SGX-DFC.

4Intel provides a quick patch in SGX SDK 1.7 version to deal with the
issue, but some functions such as memmove were not updated.
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Fig. 9. The callback registration code of EVE.

Fig. 10. Port scanning detector.

• What is the performance overhead of EVE? How does it
compare with existing approaches?

• What is the impact of EVE on end hosts?
• How does each EVE component affect performance?
• What types of attacks are mitigated by EVE?
We use Quad core Intel Xeon E3-1280 v6 3.90GHz CPU

machines running Linux 4.4.0. We run clients, servers, and an
EVE middlebox on different machines connected at 10 Gbps.
The servers and clients generate multiple TLS connections.
We use long-lived TLS connections unless otherwise noted.

A. Writing EVE Application

EVE API is flexible enough to support diverse use cases.
It allows developers to dynamically adapt their operational
policies. To write an EVE application, developers need to
implement callback registrations and callback functions for
flow-in and decryption-done events. We show three realistic
EVE applications as examples that demonstrate diverse use
cases. Note, existing approaches, such as SafeBricks [52],
mbTLS [44] and ShieldBox [64], do not provide such a
common set of abstractions for in-middlebox processing of
encrypted traffic.

DPI on nested encryption: We present a DPI middlebox
that handles TLS traffic over VPN tunnel. The middlebox
decrypts outer and inner flow sequentially and performs pat-
tern matching upon the plain-text. As Figure 7 illustrates,
we assume the end-to-end traffic is TLS encrypted over an
OpenVPN tunnel. Figure 8 and Figure 9 show 25 lines of code
that achieves this, demonstrating the power of our high-level
abstraction. Note, without EVE APIs, this requires significant
programming effort.

Figure 8 shows two callback functions. Upon the arrival
of a new flow, cb_flow_in is invoked by the EVE run-
time. A VPN tunnel is identified by the destination port,

Fig. 11. EVE callback functions for DPI on both TLS and DTLS traffic.

and a VPN queue is assigned to the flow (line 5). When a
VPN queue is assigned, successive packets of the flow will
be automatically inserted to the queue, and the flow will
be decrypted by the queue-engine pipeline. When a VPN
payload is deciphered, decryption-done event is raised and
cb_decryption_done callback is invoked (line 10). Also,
upon the decryption of the VPN flow, EVE would discover that
there is an inner flow. EVE then raises the flow-in event that
invokes cb_flow_in again. In the cb_flow_in callback,
a TLS queue is assigned to an inner flow of interest (line 7).
The flow then is decrypted by the TLS decryption engine.
In the cb_decryption_done callback (line 10 ∼ 17), the
plain-text payload of the inner flow is matched against a set
of patterns. The callbacks and ruleset are registered as shown
in Figure 9.

Port scanning detector: With the same scenario of
Figure 7, we present a simple port scanning detector that
inspects traffic inside a VPN tunnel when a malicious end
host tries to scan the opened ports of other benign hosts in the
same private network. It is hard for third-party middleboxes to
detect port scanning inside a VPN tunnel because the scanning
packets are encrypted. The EVE abstraction allows developers
to program port scanning detection of in-tunnel flows as if
they were unencrypted.

Figure 10 shows a code snippet of a middlebox that
logs a warning message when the number of scanned ports
exceeds 10 in a second. The detector first decrypts VPN flows
by assigning a decryption queue (line 4). After the decryption,
the detector checks whether a flow comes from the VPN queue
(line 6). Then, the detector keeps the current time and the flow
tuple of the inner flow to track the number of scanned ports
(line 8). The detector counts the number of flows that have
the same IP address of destination within a second (line 9).
Finally, the detector notifies a warning message when the count
exceeds the threshold (line 10 ∼ 12).

DPI on Internet of Things (IoT) environment: Recent
studies [16], [28] present that network IDS is necessary for
securing IoT devices. EVE middlebox is applicable to such
use cases that require flow monitoring on both TLS-encrypted
traffic from a mobile application and DTLS-encrypted traffic
from IoT devices. Figure 11 shows EVE callback functions
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Fig. 12. Pattern matching throughput and EPC usage.

Fig. 13. Core scalability.

to achieve the goals. In the cb_flow_in callback, different
decryption queue is assigned to incoming flow by retrieving
the L4 protocol of the flow (line 3 ∼ 7). When each flow is
decrypted, cb_decryption_done callback performs DPI
on the decrypted plain-text (line 9 ∼ 16).

In summary, we show EVE’s high-level abstraction is useful
for handling encrypted traffic with various encryption proto-
cols and use cases.

B. EVE Middlebox Performance

We now evaluate the performance overhead of the EVE
applications and compare them with existing approaches.

Deep packet inspection: We measure the throughput of a
middlebox that runs deep packet inspection on TLS-encrypted
traffic. For pattern matching, we use the DFC [8] and a
PCRE2 [51] regular expression matching engine with a com-
mercial ET-Pro ruleset [13]. We use randomly generated traffic
as input while varying the number of patterns from 1k to
24k. Figure 12 shows the throughput of EVE compared with
a version that does not have any security features of EVE,
including SGX. The EVE middlebox incurs only up to 16.16%
of degradation compared to the baseline. The EVE middlebox
also efficiently manages EPC memory. As we increase the
number of patterns, the EPC heap usage increases as the dotted
line shows. Nonetheless, EVE middlebox only uses 19.6 MB
of EPC memory with 24 k rules at its peak. This effectively
reduces EPC paging that incurs serious performance overhead.

TCB size comparison with existing approaches: We
compare the TCB size of EVE which has about 3.30 MB of
code size to ShieldBox [64] and SafeBricks [52]. Because the
codes of both systems are not publicly available, we use the
numbers presented in the papers. ShieldBox puts the most of
DPDK [23] code except for the packet buffer and the core
parts of CLICK [32] which has about 6 MB of code inside the
enclave [64]. In contrast, EVE puts DPDK and mOS [26] code

Fig. 14. Flow completion time.

Fig. 15. EPC heap usage for decrypting a TLS flow.

in the untrusted region as we separate the security-insensitive
parts of EVE to minimize TCB.

SafeBricks [52] contains less than 1 MB code, which is
smaller than that of EVE. However, this gap comes from that
SafeBricks supports only a specific IPSec decryption [52].
EVE, in contrast, supports various cipher suites such as
TLS, DTLS and VPN protocols by containing OpenSSL [47]
and OpenVPN [48] code in its enclave. Therefore, EVE is
applicable to diverse use cases with its TCB code be larger
than that of SafeBricks but still be reasonably small.

Multi-core scalability: EVE delivers multi-core scalability
by using per-core thread in the enclave. We measure EVE’s
performance while increasing the number of cores and com-
pare it against an implementation that uses TaLoS-like [4]
thread pool. We tune the number of threads in its pool to
give the best performance. Figure 13 shows the performance
of EVE scales linearly to the number of cores. This is because
EVE uses efficient per-core lock-free queues. In contrast,
thread pool approach suffers from inter-core communication
and locking overhead.

Out-of-band key sharing overhead: For each out-of-band
key sharing, an end server encrypts and transmits 104 bytes
of secrets to EVE. We measured the maximum rate of out-
of-band key sharing using a single core. The result shows
that EVE can handle 94 k out-of-band key transfer per second
per core. This is comparable to a high-end hardware fire-
wall [9] capable of handling 50 k to 350 k connections per
second.

We also evaluate how out-of-band key sharing affects flow
completion time. We use a vanilla TLS as a baseline. We
measure the time between connection establishment and the
arrival of the first 64 B TLS payload. Then, we break the time
into TLS handshake, key share and TLS data read. Figure 14
shows out-of-band key sharing incurs minimal latency over-
head (0.49% of TLS handshake). Finally, we apply SGX to
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Fig. 16. Comparison of decryption throughput with various encryption protocols.

the TLS server to perform out-of-band key-sharing and TLS
operation in the enclave and measure the same latency. The
result shows the total latency overhead of SGX is moderate
(12.99%) and the key sharing at the SGX-enabled server incurs
1.49% of additional latency overhead compared to its TLS
handshake. Note, applying SGX to the server is optional if
the operator trusts the server and its platform.

After the out-of-band key sharing, EVE flow-key associating
module stores a flow tuple and initialized decryption context
pairs in memory-efficient key-value structure. To quantify
the memory overhead of the flow-key association, we mea-
sure EPC heap memory usage for a TLS flow decryption.
Figure 15 shows the distribution of EPC heap memory usage
for decrypting a TLS flow. The flow-key associating module
only takes about 0.4% of the memory usage for mapping a
flow-key pair, while more than 99% of the usage is occupied
by TLS-related structures. In addition, to lower the EPC usage
for TLS decryption, we can reduce the size of TLS record
buffer which is more than 16 KB by OpenSSL default [47].

C. Microbenchmark Evaluation

We now characterize the performance overhead of EVE’s
components.

Decryption throughput: We measure the decryption
throughput of EVE with various encryption protocols by
increasing record size. The baseline is EVE version without
any security components (SGX, Rust and SGXBounds). We
compare the complete EVE and EVE without SGX optimiza-
tion (EVE(No-opt)) (§V) with the baseline. We measure
decryption throughput without DPI in this scenario.

The result in Figure 16 shows EVE achieves high decryp-
tion throughput over TLS (4.99 Gbps), DTLS (9.33 Gbps)
and TLS over VPN (0.75 Gbps) traffic with 1 KB record
size. The performance overheads from EVE security com-
ponents are up to 0.60%, 1.57%, and 8.04%, respectively.
We observe that degradation caused by the original SGX
SDK (EVE(No-opt)) is dominant, and our optimization
dramatically improves the throughput, except for DTLS that
does not frequently call memmove during the decryption.
In particular, EVE achieves much higher TLS decryption
throughput when the record size is more than 64 B because
our memmove port supports vectorized instructions (AVX).

Overhead breakdown: To characterize the performance
overhead of security components, we evaluate four versions of
EVE, each without one or more security components: 1) SGX,

Fig. 17. Comparison of DPI throughput on TLS over VPN encrypted traffic
with the four versions of EVE.

2) Rust and 3) Bounds check using SGXBounds. To test EVE
without Rust, we implement the same API function in C/C++.
We evaluate the EVE throughput when it decrypts TLS traffic
over VPN tunnel and performs DPI on the decrypted plain-text
while increasing TLS record size from 64 B to 1 KB. We use
TLSv1.2 AES256-GCM-SHA384 cipher suite.

Figure 17 shows the DPI throughput of each version. Note
the overhead of security components of EVE becomes minimal
as the record size increases because the record decryption time
dominates 1) the enclave transition overhead, 2) the flow data
copying overhead from C/C++ structures to Rust APIs and
3) the runtime boundary checking for accessing record buffers.
The performance overhead of all three security features on
decryption is at most 14.99% (64 B TLS record size) and as
small as 3.00% (1 KB TLS record size).

D. Security Analysis

Recent SGX studies [29], [37] emphasize the serious-
ness of enclave software vulnerabilities. For example, COIN
attack [29] shows that a number of well-known SGX sys-
tems are vulnerable to concurrent enclave accesses, and
Dark-ROP [37] presents return-oriented programming attacks
exploiting enclave code vulnerabilities.

EVE mitigates such attacks by providing enclave memory
safety components. EVE Rust APIs prevent middlebox appli-
cation code from directly handling C/C++ pointers and
use-after-free. Also, EVE internals and integrated third-party
libraries, which are implemented with C/C++, reduce
software-driven memory vulnerabilities such as buffer over-
flow by memory boundary checker [35]. Finally, flow-core
association and per-core structures achieve flow-level isolation
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that alleviates the potential vulnerabilities from concurrent
flow processing. Though we do not address micro-architectural
SGX side-channel attacks as we mentioned in our threat
model, we achieve fine-grained enclave memory safety against
software vulnerabilities.

VII. RELATED WORK

SGX for middlebox: Inspired by the pioneering stud-
ies [20], [31], [58], researchers have explored the possibility
of adopting SGX on network functions. mbTLS [44] extends
the TLS handshake protocol to support interoperability with
legacy TLS endpoints and protects session key data using Intel
SGX. However, mbTLS is TLS-specific and does not support
diverse use cases, such as nested encryption and VPN support.
Also, mbTLS does not support a strong threat model that
provides defense against memory safety attacks on enclaves.

ShieldBox [64] leverages SCONE [3], a shielded execu-
tion framework, to execute existing network functions inside
SGX enclaves without modification. ShieldBox delivers high
performance using kernel bypass by utilizing Intel DPDK. It
exposes a generic programming interface based on Click [32].
However, ShieldBox does not natively support visibility on
end-to-end encrypted traffic nor handle stateful flow manage-
ment. Trusted Click [10] and ENDBOX [18] also utilize Click
with SGX enclaves to explore the feasibility of performing
network functions. However, both of them has limitations on
supporting stateful processing. In addition, ENDBOX suffers
from high deployment cost because network operators need to
change all client systems to be equipped with SGX-enabled
hardware due to its de-centralized system model.

SafeBricks [52] is a system for securely outsourcing net-
work functions to an untrusted cloud environment. SafeBricks
assumes the presence of trusted client gateways to enable
the decryption of end-to-end encrypted traffic. SafeBricks
decrypts the incoming traffic that is encrypted by the trusted
client gateway with the fixed encryption protocol and cipher
suite. SEC-IDS [34] combines SGX with Snort IDS [60] by
leveraging Graphene-SGX [65]. It protects the integrity of
Snort system but does not handle encrypted traffic. AirBox [6]
applies SGX to address security concerns for edge clouds.

We believe EVE is superior to existing frameworks in
building diverse network functions, as it provides high-level
abstractions for flexible encryption protocol support.

Handling encrypted traffic. mcTLS [45] modifies TLS to
explicitly include middleboxes during a handshake. It encrypts
a packet into multiple encryption contexts and grants read-only
or read/write access permissions to middleboxes using dif-
ferent partial keys. PlainBox [39] proposes a session key
sharing procedure between end client and middleboxes without
changes in encryption protocols by utilizing Attribute-Based
Encryption [5]. BlindBox [57] uses a searchable encryption
scheme to support string matching and regular expression
matching on encrypted traffic. Embark [36] enhances the per-
formance of BlindBox by introducing a new faster encryption
scheme. Compared to the above approaches, EVE can be
deployed on top of existing encryption protocols without any
modification of end client system.

VIII. CONCLUSION

We propose EVE, a complete platform for building network
middleboxes that provide visibility on encrypted traffic to
enable packet inspection. For programmability, EVE pro-
vides high-level abstractions for middlebox programming and
supporting multiple encryption protocols. It allows develop-
ers to easily implement EVE applications without in-depth
knowledge of cryptographic libraries and low-level packet
processing. EVE mitigates the leakage of the user private data
because every security-sensitive operation is protected by an
SGX enclave. Also, it uses a safe language, Rust, and state-of-
the-art memory boundary checking technology to harden the
enclave program. Our evaluation shows that EVE is a practical
system that covers diverse use cases and introduces moderate
performance overhead.
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