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Recent advent of manycore system increases needs for larger but faster memory hierarchy. Emerging next
generation memories such as on-chip DRAM and nonvolatile memory (NVRAM) are promising candidates
for replacement of DRAM-only main memory. Combined with the manycore trends, it gives an opportunity
to rethink conventional resource management system with a memory hierarchy for a single cloud node.
In an attempt to mitigate the energy and memory problems, we propose MN-MATE, an elastic resource
management architecture for a single cloud node with manycores, on-chip DRAM, and large size of off-
chip DRAM and NVRAM. In MN-MATE, the hypervisor places consolidated VMs and balances memory
among them. Based on the monitored information about the allocated memory, a guest OS co-schedules
tasks accessing different types of memory with complementary access intensity. Polymorphic management
of DRAM hierarchy accelerates average memory access speed inside each guest OS. A guest OS reduces
energy consumption with small performance loss based on the NVRAM-aware data placement policy and
the hybrid page cache. A new lightweight kernel is developed to reduce the overhead from the guest OS for
scientific applications. Experiment results show that our techniques in MN-MATE platform improve system
performance and reduce energy consumption.
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1. INTRODUCTION

Recent advent of manycore system in a computing node enables increased concurrency
of executions by accommodating multiple guest OSes and multiple tasks inside each
guest. More concurrent tasks requiring larger size of memory creates needs for larger
and faster memory hierarchy. However, growing disparity of speed between CPU and
off-CPU memory, called memory wall, results in decrease of benefit from concurrent
execution of tasks. Limited communication bandwidth between CPU and memory also
increase the disparity. Furthermore, large size of DRAM consumes much larger energy.
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Fig. 1. Overall MN-MATE system hierarchy. HMM indicates a hybrid architecture of the main memory.

Several researches try to mitigate overheads from off-chip DRAM-only main memory
system. Putting DRAM inside a CPU chip can reduce access time to the main memory
[Kgil et al. 2006; Liu et al. 2005; Loi et al. 2006]. Utilizing NVRAM main memory could
reduce the energy consumption [Quershi et al. 2009; Zhao et al. 2007; Lee et al. 2009].
Highly parallelizable computing units like GPGPU accelerate computation speed.

Utilizing resources is another crucial issue when the hardware includes on-chip
DRAM, off-chip NVRAM main memory, and GPGPUs for energy-efficiency and high
performance. Larger size of memory in a computing node creates different access la-
tencies from memory hierarchy to each core. In such an environment, partitioning and
balancing resources among VMs and execution entities is a challenging issue to pro-
vide fairness while enhancing performance. NVRAM main memory creates needs for
the hypervisor and guest OS to decide how it is distributed to them. Managing hybrid
architecture of NVRAM and DRAM and data placing policy on them also should be
considered to reduce energy consumption while maintaining application performance.

In an attempt to manage resources, we propose MN-MATE, a novel resource man-
agement system which balances resource allocations among VMs and manages them
inside each VM. Figure 1 illustrates an overview of our MN-MATE system. In the hy-
pervisor, we propose a VM placement policy considering NUMA (Non-Uniform Memory
Access) architecture of target memory hierarchy. The hypervisor also instantly balances
memory usage among VMs according to their changing memory demands.

On top of the various types of memory resources, we propose three management
schemes for distributed memory hierarchy. Allocated DRAM memories in the hierar-
chy are managed polymorphically based on memory/cache-oriented solutions. Hot/cold
separation and data migration scheme based on page grouping for hybrid main memory
of DRAM and NVRAM reduces energy consumption dramatically. Utilizing NVRAM
as a base of page caching also reduces energy consumption. Experiment results show
that our resource management schemes shows remarkable performance improvements
while reducing system-wide energy consumption.

This study is an extension of our previous work [Park et al. 2010, 2012a, 2012b],
in which we focused on a single layer of the VM environment, either a guest OS or
the hypervisor. Our objective in this study, however, is to integrate techniques for each
guest OS and the hypervisor running on top of a single cloud node.

The remainder of this article is organized as follows. Section 2 illustrates our tar-
get architecture for MN-MATE as a cloud node. Section 3 describes problems to
solve in MN-MATE target system. Section 4 describes VM management techniques
in the hypervisor. Sections 5 and 6 describes management solutions inside each of
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Fig. 2. Target hardware architecture of the MN-MATE system.

resource-balanced VM, especially with two types of guest OSes. Section 7 describes
two applications run on top of our system. Section 8 shows experiment results of our
designs. Section 9 discusses related work. We conclude our work in Section 10.

2. TARGET ARCHITECTURE OF MN-MATE

Technical limitations of increasing CPU clock speed make a CPU chip integrate more
cores. Manycore CPU increases computational capability of a system by parallelizing
instruction executions. Larger size of main memory is required to accommodate more
concurrent tasks with bigger memory footprints. However, limited DRAM scalability
[Lee et al. 2009; Meza et al. 2012] and various access latencies according to the loca-
tion of the main memory [Govil et al. 1999; Bligh et al. 2004; VMware 2005] have been
pointed out as a main reason of performance degradation. Low energy efficiency of the
DRAM main memory also emerges a big issue [Park et al. 2011b]. In addition, conven-
tional cores are not specialized for parallel executions due to their general purposes.

There are several architectural propositions for memory hierarchy to utilize all com-
putational abilities of the manycore CPUs and GPUs. Recent advances in 3D stacking
semiconductor technologies give an opportunity of faster main memory access to cores
by stacking some part of main memory on top of cores in a chip. It gives higher band-
width and low access latencies of on-chip main memory to the cores, while most of the
main memory out side the chip play roles of conventional main memory. Next gener-
ation NVRAMs (NGNVRAM) such as Phase-change RAM (PRAM), Ferroelectric RAM
(FRAM), and Magnetoresistive RAM (MRAM) enlarge main memory capacity based
on their higher density. They also become promising main memory candidate because
of their low energy consumption from nonvolatility characteristic. They have unique
advantages compared with DRAM, long access latency and asymmetric read/write la-
tency make it hard to solely used as main memory of high performance computing
system. It gives us an insight that advantages of each medium can complement the
other. Hybrid combination of NGNVRAM and DRAM, therefore, can be considered as
promising future main memory.

In this article, we target a single hardware node for a cloud computing system. Var-
ious resources can be integrated into a state-of-the-art single cloud node to enhance
system performance. Among them, we target a combined architecture of manycore
and hierarchical hybrid main memory. Figure 2(a) shows our target hardware archi-
tecture illustrating several architectural propositions for manycore system. There are
several manycore processors containing cores, caches, memory controllers, and on-
chip DRAM. The main memory hierarchy is composed of on-chip DRAM, conventional
off-chip DRAM, and emerging off-chip NVRAM, where each of them are available via
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memory controllers. We build two layers of memory hierarchy, M1 memory with on-chip
DRAM and M2 memory with off-chip DRAM and NVRAM. M1 memory located in the
CPU chip provides higher bandwidth and lower access latencies. Because M2 memory
provides larger memory capacity with small performance loss, each type of memory
is complementary to the other. In M2 memory, DRAM and NVRAM are located at the
same memory level, like shown in Figure 2(b). Here we use PRAM and STTRAM as
representatives of NVRAM for its scalability and low energy consumption.

3. MOTIVATIONS

Resource management is a consecutive repetition of resource partitioning and balanc-
ing to meet requirements. Under the virtualized system, the hypervisor distributes
CPU timeslices and memory to each guest VMs. Guest OS manages received resources
and run applications on top of them.

The hypervisor have to consider NUMA architecture to distribute CPU timeslices
among guest VMs while maintaining fairness among them. Large size of main memory
is composed of multiple memory modules, which causes different access latencies. Fur-
thermore, our target system has hierarchical memory architecture which has various
kind of access latencies, including NVRAM. In such a situation, there are four consider-
ations. First, a VM may have access its memory remotely when its VCPU and memory
are not in the same NUMA node (rem acc). Second, a VM may suffer from contentions
on shared resources which its memory access requests pass through. Contention on a
shared cache gives higher cache miss ratio to the VMs using it (l3 cont). Contention on
a memory controller and an interconnection gives delayed memory access latency to the
VMs using them (mc cont and ic cont, respectively). Depending on the VM placement
decision of the hypervisor and the memory access loads of the VMs, each VM will have
unpredictable data access performance.

Partitioning and balancing of memory among consolidated VMs are critical for en-
hancing system-wide memory utilization on a single hardware. Conventionally, mem-
ory inertia and the higher penalty from wrong decision make the memory partitioning
and balancing more important than scheduling CPU cores. For this, the hypervisor
needs to figure out which VM requires memory and which VM has the least useful
memory. Then, the hypervisor has to decide the memory type, amount of memory to
transfer, page frames to transfer. With previous ballooning [Waldspurger 2002] solu-
tions, selection of page frames to transfer is responsible for the owner guest OS. It
delays securing free memory in the guest OS due to the reclamation of dirty pages.
Such delay depreciates the value of the transferred memory in the recipient VM.

Once the hypervisor distributes resources, each guest OS runs applications on top of
them. Each guest OS receives different memories with various memory access latency
while receiving timeslices of homogeneous CPU cores. It gives them problems to solve.

Guest OS scheduler have to consider different memory access latency like the hyper-
visor does to place VMs. In MN-MATE, a guest OS can have three type of main memory,
M1 DRAM, M2 DRAM, and M2 NVRAM. Along with the different DRAM access la-
tency, asymmetric read and write latency of NVRAM makes contention in the memory
controller more severe. Latency to access NVRAM significantly increases when a task’s
memory is located in a different domain on a NUMA system. Zhuravlev et al. [2010]
and Blagodurov et al. [2010] proposed approaches to utilize memory contention to the
task scheduling. But they have no considerations about different NVRAM read and
write latencies in their scheduling method. The number of memory transactions they
used as criteria does not reflect the amount of memory bandwidth consumption.

In addition to the problems in task scheduling, a guest OS has to choose a method
to carefully manage M1 memory, the fastest main memory medium for its higher
bandwidth and lower latency. To enlarge SRAM caches, it can be used as an another
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Fig. 3. Detailed explanation of PMU event monitor.

level of LLC (last level cache). Tasks can be accelerated as they get more M1 memory.
To enhance system-wide performance, the guest OS need to decide how much memory
are managed by each method.

Each guest OS must manage DRAM and NVRAM utilization of M2 memory not to
degrade performance while reducing energy consumption. Read from M2 NVRAM is
energy-efficient because of the nonvolatility of the medium. However, long write latency
and the compensation operations for the limited write endurance degrade performance
in exchange for the benefit. Higher write energy consumption may countervail saved
energy by the read operations. Because DRAM has faster and same read/write latency
with higher energy consumption, the guest OS utilizes both types of memory with the
consideration of trade-off between performance and energy consumption.

The management of M2 NVRAM greatly affect system performance if M2 NVRAM
page frames are used as page cache. The primary purpose of the page cache is to hide
disk access latency. However, conventional algorithms for page cache, such as LRU
[Dan and Towsley 1990], LIRS [Jiang and Zhang 2002], and CLOCK-Pro [Jiang et al.
2005], are often suboptimal. Their DRAM-oriented design including symmetric access
latency and unlimited endurance make the page cache inefficient, thus make previous
algorithms not applicable to the M2 NVRAM-based page cache.

4. DESIGN FOR HYPERVISOR

In the hypervisor, we build a system monitoring module to track current status of
running entities. Based on the collected information, we propose a policy for VM place-
ments and balances memory among them.

4.1. Monitoring of System Status

In MN-MATE, several problem-solving approaches use recent status of the system as
decision criteria. The hypervisor collects events and performance information of guest
VMs and their tasks. For VM relocation, as shown in Table I and Figure 3, it especially
utilizes hardware PMUs (Performance Monitoring Units) to count the events occurred
for a second in several parts of the MN-MATE hardware platform. In the core level,
the hypervisor collect the number of instructions consumed by each VCPU, insti in the
table. In the cache level, it counts how many times each VCPU attempted to access
data in the cache, re fi, and failed to obtain the data, missi. In the memory controller
and the interconnection, it measures average latency of requests accessing memory
which missed the shared cache. For the purpose, the PMU captures a memory access
request at a time (e.g., REQ1 and REQ4 in the figure) and counts the number of
cycles consumed for each captured request. The total number of the cycles divided by
the number of captured requests, mlatS,D/mreqS.D, become the average latency of the

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 1, Article 5, Pub. date: July 2015.



5:6 K. H. Park et al.

Table I. Monitored PMU Events for Runtime VM Placement

Event Event (Evt.) Description (Evt. Symbol in AMD Monitoring
Count 6172 Processor [AMD 2013]) Object

re fi The number of L3 Cache References, Data Access Requests (NBPMCx4E0) VCPU of VMi

missi The number of L3 Cache Misses, Memory Access Requests (NBPMCx4E1) VCPU of VMi

insti The number of retired instructions (PMCx0C0) VCPU of VMi

mreqS.D The number of DRAM Read requests captured, one at one time (NBPMCx1E3)
NodePairS.D

(Src. S, Dst. D)
mlatS.D Cycles taken for the requests captured for mreqS.D (NBPMCx1E2) NodePairS.D

Fig. 4. Runtime migration of target VM on MN-MATE.

memory access requests. For memory balancing among VMs, the hypervisor monitors
swap storage usage of each guest OS.

4.2. Runtime Placement of guest VMs

To place guest VMs with the consideration of different memory access latencies, the
hypervisor needs several performance information. As the PMUs cannot monitor the
value directly, we build a heuristic equation and fill the terms using the counts of the
PMUs described in Table I. The equation is expressed as

Li(t) = (1 − cmri(t)) · tL3 + cmri(t) ·
(

ti.mem(t)
conci(t)

)
=

(
1 − missi(t)

re fi(t)

)
· tL3 + missi(t)

re fi(t)
·

(
mlatS.D(t)
mreqS.D(t)

)
(

missi (t)
mreqS.D

(t)
)

=
(

1 − missi(t)
re fi(t)

)
· tL3 + mlatS.D(t)

re fi(t)
,

(1)

where Li is the measured data access latency of VMi, tL3 is the constant latency of
VMi taken for accessing a L3 shared cache, cmri is the cache miss ratio of VMi, ti.mem
is the memory access latency of VMi on average, and conci is the concurrency of the
memory access requests. The other terms are described in Table I. The equation is
composed of the terms related with the requests hit the L3 shared cache and the
requests missed in the cache. For the latter term, as the modern CPUs can issue
multiple outstanding memory access requests, we divide the measured memory access
latency by the concurrency of the memory access requests.

The primary goal of the hypervisor changing placement of guest VMs is to minimize
the effect of the delay. The whole VM placement procedure consists of two parts.

First half is to find VMs which needs to be migrated. The prerequisite for selecting
migration candidate is to declare how much data access delay each VM requires, which
is denoted by ReqLi in Figure 4. Each VM then measures the average data access
latency using (1). The hypervisor selects a VM with the largest difference of access
delay between the required value and the measured value.
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Table II. Summary of Mcredit-Based Migration (Mig.) Algorithm

Reason Name Mig. Object Mig. Destination Node (mig) (nloadX in Figure 4)

l3 cont VCPU The node with the least MPKI (cache misses per kilo instructions) sum on its
shared cache (nloadmig.l3) and the idle interconnection (nloadmig.ic)

rem acc VCPU The node where the memory of VMi is

ic cont VCPU The node with less rem acc& the idle interconnection (nloadmig.ic)

mc cont
Memory,
VCPU

The node with the least MPKI sum on the memory controller (nloadmig.mc)

Fig. 5. Overall architecture of instant memory balancing scheme.

The second half is to find out the main reason of the delay and selects proper migra-
tion strategy. For each candidate reason, the hypervisor estimates Li under no effect
of the reason by replacing each term in (1) to an ideal value. To exclude l3 cont, we
replace cmri of (1) to the heuristically estimated cache miss ratio as if VMi owns the
shared cache. To exclude rem acc, we subtract the constant remote access delay from
the term for the memory access requests. For ic cont and mc cont, we set the term for
memory access requests to the ideal memory access latency value. If the hypervisor
find that Li without a certain reason is smaller than the others, the hypervisor tries to
migrate the target VM following the policies in Table II.

4.3. Memory Balancing among Consolidated VMs

The hypervisor have to manage M2 memory demands of each guest VM, even after
placing them. To adapt changing memory demands of consolidated VMs, the hypervisor
balances M2 memory among them. The hypervisor accelerates the balancing procedure
based on reference pattern classification. In this subsection, ‘memory’ indicates the M2
main memory in the MN-MATE memory hierarchy, unless otherwise noted.

The MN-MATE hypervisor selects least-valuable page frames to transfer by estimat-
ing reclamation cost of page frames according to the memory type and reference pat-
tern. Then the hypervisor reclaims selected page frames and donates them to memory-
thirsty VMs. Figure 5 illustrates an overall memory balancing architecture.

To estimate least-valuable page frames among candidates, the hypervisor uses their
reference pattern. In Figure 5, each guest OS passes on information about events on
pages within its own page cache. The events include which page is inserted into, evicted
from, and reused within the cache. In addition, memory accesses from the VMs to those
pages are intercepted by the hypervisor. Combined with the above information, the
hypervisor classifies candidate page frames into three pattern categories and manages
them to find least-valuable page frames. Here the hypervisor considers clean page
frames that belong to a page cache as candidates due to its volatility.

Figure 6 illustrates how the hypervisor monitors memory access patterns. A guest
OS informs the hypervisor arguments of read/write-related system calls. We categorize
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Fig. 6. Examples of sequential, loop reference pattern sequence and a sequence management table.

page frames into three types: sequential, loop, and unclassified references. Page frames
are categorized as sequential and grouped as a sequence if a task accesses them se-
quentially. If a sequence is accessed sequentially again with a period, it is categorized
as loop pattern. Otherwise, page frames are categorized as unclassified. We use MRU
for sequences and LRU for the unclassified page frames.

The next operation is to decide which VM requires memory. With the collected swap
storage usage of each VM, the hypervisor determines memory demands of all the VMs.

The instant memory transfer is a consecutive procedure of page frame reclamation
followed by donation to memory-thirst VMs. When a page is requested for memory
balance, for example, a least-valuable page frame is selected as the victim page on the
basis of its reference pattern. The page frame is transparently reclaimed shortly before
the hypervisor tries to schedule the beneficiary VM. Sequentially referenced pages are
reclaimed prior to others. Loop referenced pages are next candidates of reclamation for
balancing. Depending on the reason for the request, a different allocation mechanism
is then applied to the beneficiary VM. If the reason is a paging-in event of a reclaimed
page in the hypervisor, a victim page is directly allocated. However, if the request is the
result of memory balancing, the hypervisor allocates the page to a guest OS through
ballooning. Later, if a victim VM has stolen more memory than the threshold level, the
hypervisor requests explicit memory borrowing from the VM.

In our page frame management, we concentrate on clean page frames that belong
to a page cache because of the volatility of the clean pages. Generally, guest operating
systems, such as Linux, attempt to use any available memory for their own caching
purposes. As a result, only a small amount of memory is left free; others contain
contents stored in the permanent storage. Because the cached nondirty content can
be rebuilt by doing a read operation from its storage location, the guest can tolerate
the loss of the page content. Thus, if the hypervisor tries to reclaim those pages, there
is no need to swap out page content to its own swap device and dual-swapping can
be avoided. Hence, we restrict our monitoring to page frames that are used as a page
cache and choose clean pages as victims. This process requires no swap storage area
for the hypervisor, no additional management cost, and no data flush overhead.

5. DESIGN FOR LINUX GUEST OS

In this section we describe three memory management techniques to manage var-
ious memories in the memory hierarchy distributed by the hypervisor. We propose
polymorphic memory for DRAM hierarchy including M1 and M2 DRAMs. For hybrid
architecture of M2 NVRAM and M2 DRAM, we proposed two schemes run inside each
guest OS. One is a power-aware memory management scheme in the guest OS for
user-level memories. The other is a page cache management algorithm to manage a
part of kernel memory in the energy-efficient manner.
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Fig. 7. Polymorphic memory architecture and its operations.

5.1. Polymorphic Memory

Polymorphic memory management scheme is a hybrid approach of the main memory
management scheme and the cache management scheme to utilize on-chip M1 DRAM.
We divide M1 DRAM into two parts: one is used as a main memory, called M1 memory.
Another is used as a cache for M2 DRAM, called M2 cache. The entire M2 DRAM
called ‘M2 memory’ is used as a main memory with M1 memory. Figure 7 describes the
target memory architecture and its operations. Basic operations consist of three parts:
1) Monitoring patterns of page accesses in the memory controller and hot-page migra-
tion; 2) Partitioning of M1 DRAM to mitigate contention problems between multiple
processes; 3) Utilizing the M2 cache as a new LLC for the data in M2 memory.

The polymorphic memory management is a periodic procedure of hardware-assisted
page monitoring followed by OS intervention for migration and partitioning. During a
period, the hardware page access monitoring module collects information about page
accesses. At the end of each period, the OS decides a new mapping of pages with the
collected information. The key assumption of this approach is that the page access
pattern during one period is similar to the next pattern during the next period. The OS
partitions M1 memory for processes and moves the frequently accessed pages in M2
memory into M1 memory. Then, all processes resume their works.

To monitor the page access patterns, the memory controller maintains two tables that
include entries of a page frame address and a counter, as shown in Figure 7. The first
table is designed to contain entries of the most frequently accessed pages. It is managed
with an LFU-like replacement policy to represent frequency. It always contains pages
with larger count values than pages on the second table. The second table use LRU
policy to represent recency. When a new page is accessed, its corresponding entry is
inserted into the MRU position of the second table with a count value of 1. If the page is
accessed, and its corresponding entry is already on the first or second table, the count
value of the corresponding entry is increased by 1. When the corresponding entry is on
the second table, we compare the count value after increasing by 1. If the count value
is greater than or equal to the minimum count value on the first table, the entry of the
accessed page is moved to the first table and the entry with the minimum count value
is moved to the MRU position of the second table.

The second is M1 memory partitioning to mitigate contention problems between
many processes. In the case of multiple programs, all programs will attempt to get
a greater portion of M1 memory for their fast execution because M1 memory shows
better performance than M2 memory. Because M1 size is limited, it will cause memory
contention. Our approach to solve the contention problem is to partition M1 memory
by controlling the M1 size for each process. By using variance in M1 hit ratios of each
process, we categorize the processes and determine M1 size for each process.

Lastly, we use the M2 cache as a cache between a conventional LLC and M2 memory.
Despite the efficiency of the monitoring algorithm, its table size is limited. As a result,
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Fig. 8. Overall architecture of hybrid M2 NVRAM and M2 DRAM main memory management system.

misprediction can lowers the hit ratio and the performance. To reduce the performance
loss by misprediction, we propose a method to use the M2 cache as a hybrid manner.
From our experimental results shown in Figure 17, 16MB of 128MB of M1 (on-chip
memory) is proper to the size of M2 cache in order to get the best performance.

5.2. Power-Aware Hybrid Main Memory

To manage main memory composed of M1 DRAM, M2 DRAM, and M2 NVRAM in a
energy-efficient manner, we propose a dynamic power-aware page placement strategy
by the guest OS for user-level memories. We group hot and cold pages based on our
monitoring mechanism and then move them when necessary. In our target architecture,
a guest OS can have three types of main memory. As a preliminary design, however,
we assume that the target main memory consists of M2 NVRAM and M2 DRAM at the
same level of memory hierarchy.

Figure 8 illustrates our power-aware management scheme. Because NVRAM is en-
ergy efficient when updated infrequently, our basic strategy is to locate frequently
updating pages to DRAM and to locate others to NVRAM for energy efficiency. A ker-
nel daemon performs monitoring, grouping, and migrating pages periodically.

Monitoring the frequency of page changes is important for the guest OS to decide lo-
cations of pages under different memory characteristics. Basically, frequently changing
pages are better located in DRAM because of the lower latency and small write energy
consumption. We introduce a new metric, hotness, to measure how frequently each
page is changed in a period of time. To differentiate hotness of the pages, we monitor
dirty bit in the page table entry (PTE) of all pages. Figure 9 shows how we monitor the
hotness of the pages. Utilizing unused 59-62 bits of each PTE, the monitoring module
collects recent write history of the page. The 6th bits, denoted with ‘D’, means dirty
bit which is changed to ‘1’ by processor when a write operation occurs. If dirty bit is
1, it shifts to the first location. Similarly, in the case of 0, it shifts to the first location.
Hotness is the sum of weight where a bit is set.

Next step is to bind pages to a group to move them together. We use another metric,
physical distance, indicating the difference of PFN that each page is actually located. It
is applicable because it is based on the characteristics that the Linux memory allocator,
Buddy System, keeps memory blocks allocated together contiguous. While existing
techniques usually use placement policy based on page-level granularity, we focus on
the relation between physically near pages. We found that grouped placement policy can
improve the efficiency because these pages are usually accessed at the same time. Every
scanning time the module calculates physical difference of adjacent PTEs’ page frames
in descending order. If the physical difference of a PTE is less than the predefined
threshold, the PTE’s page frame is grouped to a previous one. A PTE with greater
physical difference than the threshold indicates a beginning of a new group.

The final step is to migrate page groups to the appropriate locations. The migration
module first decide the hotness of each group, then migrate them based on the decision.
The hotness of a group is calculated by the average of all PTEs’ hotness. If the average
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Fig. 9. An example diagram of the adaptive page grouping algorithm. Bit shifting is used for storing dirty
bit information. Page Group is based on physical distance because physically near pages have similar access
counts.

Fig. 10. An overview of the hybrid page cache and its operations.

hotness of a group is greater than the predefined hot threshold, it become a hot group.
If it is smaller than the cold threshold, it become a cold group. If not included in both
cases, it become a warm group.

The migration module migrates a page group if a hot group is located in NVRAM and
a cold group is located in DRAM. We used four basic migration principles: 1) Allocate
DRAM to every memory allocation request; 2) Move hot groups to DRAM and cold
groups to NVRAM; 3) No changed to the warm groups; 4) Allocate DRAM to every
kernel memory request.

5.3. Hybrid Page Cache

Hybrid main memory of M2 NVRAM and M2 DRAM also gives each guest OS a need to
manage data placements for its own page cache. To reduce energy consumption while
maintaining memory access performance, we propose a data placement scheme based
on predicted page access pattern, which aims at locating write-bound pages to DRAM.

A guest OS predicts page access patterns with four monitoring queues: a DRAM
read queue, a DRAM write queue, a NVRAM read queue, and a NVRAM write queue.
Figure 10(a) illustrates basic operations with the four queues. If a page is accessed, it is
added to both the LRU list for cache management and one of the four queues according
to its access type and the target memory type.

To determine how close a page is to write-bound or read-bound, the guest OS calcu-
lates a weight value. It is calculated by a moving average Wcur = αWprev + (1 − α)RT
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Fig. 11. Basic idea of the task scheduling for hybrid main memory. The scheduler selects a task consuming
complementary EBW to different type of memory.

with weight α ∈ [0, 1], where RT means the requested type of the page. Wcur increases
when write requests occur while decreases at every read request.

Figure 10(b) shows how the guest OS determines movements between read queue and
write queue. We use two threshold values, Trmig and Trq, based on experiments. Trmig
indicates whether a page is required to be migrated. Trq decides movement between
read queue and write queue.

We have a two-way migration strategy: write-bound page to DRAM and read-bound
page to NVRAM. For example, if a write touches a page in the NVRAM write queue and
its weight value is greater than Trmig, the guest OS migrates the page to the DRAM
write queue. Similarly, a page in the DRAM read queue can be migrated to NVRAM’s
if the page’s Wcur is smaller than −Trmig when read.

5.4. Task Scheduling for Hybrid Main Memory

Hybrid main memory of M2 NVRAM and M2 DRAM incurs conflicts in memory accesses
among tasks using same type of memory. Each guest OS, therefore, requires a new task
scheduling policy diffusing memory accesses through time to prevent performance
degradation. Our scheduling scheme consists of two phases: 1) per-task memory access
monitoring; 2) selection of a next candidate task to be scheduled based on collected
memory access statistics during the previous phase. Figure 11 illustrates the basic
idea of the hybrid main memory-aware task scheduling.

In the first phase, a guest OS collects per-task memory access counts whenever a
task consumes all scheduled time slices or is preempted by other task. Collected values
include the number of DRAM accesses, the number of NVRAM reads, and the number
of NVRAM writes. Generally, the DRAM bandwidth usage of a task is measured as
the number of memory transactions during a unit time. However, NVRAM has dif-
ferent access latencies from DRAM, which an access request takes longer time to be
responded. Conventional method has no capability to recognize bandwidth fluctuation
of a task according to the distribution ratio of read and write. We therefore calculate
a new metric, Effective Memory Bandwidth (EBW) to translate NVRAM’s bandwidth
usage into the number of DRAM transactions using Equation (2). Here EBW(T ) in-
dicates the effective bandwidth of a task T, EBW DorNV indicates effective bandwidth
for DRAM or NVRAM. BW D represents conventional bandwidth for DRAM. NUMReq
is the number of memory access transactions. TD indicates memory access latency of
DRAM. NR and NW is the number of read/write transactions to the NVRAM. γ and δ
denotes a relative access latency of NVRAM read and write compared with the DRAM
access, respectively.

EBW D = BW D � NUMReq × TD

EBW NV � γ × NUMR × TD + δ × NUMW × TD. (2)
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Fig. 12. Overview of the Core Federation.

In the second phase, the guest OS selects a task based on a EBW, a converted NVRAM
bandwidth consumption, which has the same unit as the bandwidth consumption of
DRAM. The detailed selection procedure is like follows.

(1) All tasks are arranged in order of EBW and are classified into two categories
based on its bandwidth consumption. Latency-sensitive tasks consume less amount
of memory bandwidth. Bandwidth-sensitive tasks spend more time to use both
types of memory. Let Taski indicates a task having ith lower EBW, then we can
calculate TotalEBW = ∑n

i=1 EBW(Taski). Schedulable tasks are classified into two
categories. K tasks satisfying

∑k
i=1 EBW(Taski) < αTotalEBW are classified into

latency-sensitive tasks. Others are classified into bandwidth-sensitive tasks. Here
α is a parameter 0 ≤ α ≤ 1, where lower α indicates a stronger threshold. We
generally use α = 0.1. Bandwidth-sensitive tasks belong to two lists; each list sorts
tasks into increasing order of consumed EBW to each memory type.

(2) The scheduler chooses a latency-sensitive task prior to bandwidth-sensitive tasks.
If there are multiple latency-sensitive tasks, a task consumed lower EBW has
higher priority. The selection order of next task from bandwidth-sensitive tasks are
like follows: 1) a task with largest EBWD; 2) a task with smallest EBWNV ; 3) a task
with largest EBWNV ; 4) a task with smallest EBWD.

6. DESIGN FOR LIGHTWEIGHT GUEST OS: CORE KERNEL

One of the target workloads of the MN-MATE system is communication-intensive scien-
tific calculations such as QR-factorization or 3D-perspective rendering. In MN-MATE,
these workloads are distributed among computing entities, that is, VMs, to parallelize
job executions. It generates application-specific needs for explicit resource reallocation.
Although the MN-MATE hypervisor has functionalities to balance resources among
VMs, it is beyond the responsibility of the hypervisor. Communication-intensive char-
acteristic of the partitioned job requires faster data transfer speed.

In this section, we explains our lightweight kernel named CORE Kernel. The CORE
kernel performs application-aware job distribution with the accelerated inter-VM com-
munication scheme. It also has simplified memory management module, I/O parts, and
the small number of kernel threads and daemons.

6.1. Core Federation

Partitioning a job and distributing to computing entities are basic functionalities of
the lightweight kernel. To perform application-specific job partitioning and allocation,
we utilized two strategies: 1) resource-aware partitioning like available VCPUs and
memory capacity; 2) application-specific partitioning to maximize parallel executions
considering application characteristics and input data.

Figure 12 illustrates two components of the core federation system and their op-
eration procedures. There are two types of service nodes: master and slave. Master
service node is the control tower of the core federation system, which consists of three
modules. Job Manager analyzes the arrived application properties including input data
distribution and the amount of calculation. Node Monitor collects current states of the
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resource distribution and past balancing histories of slave service nodes. It also mon-
itors performance information of the slaves. Partition Manager splits job into several
job fragments and allocates them to nonbusy slave nodes.

The core federation is a consecutive procedure of the following operations. When an
application arrives at the job manager, the manager gets the amount of calculation
and the number of required threads. With the collected information from slave nodes,
the partition manager determines the number of job fragments and the number of
threads to executes them. The manager can start more VMs if needed. The manager
can also request the hypervisor to balance resources among VMs if they are in a
resource-unbalanced states. The hypervisor responds with the resource management
schemes described in Section 4. The partition manager triggers executions of threads
and returns collected results when all slaves complete executions.

6.2. Transparent Inter-VM Communication between CORE Kernel VMs

Because they exchange large amount of data, inter-VM communication speed is criti-
cal to the calculation performance. However, complex communication path and unnec-
essary packaging stack decreases communication speed. Several researches such as
XenSocket [Zhang et al. 2007] or XWAY [Kim et al. 2008] proposed inter-VM commu-
nication solutions. Though they may have several advantages, they are not applicable
to our target architecture. Different access latencies from hierarchical structure of on-
chip M1 DRAM and M2 NVRAM and M2 DRAM degrades communication speed, thus
degrading performance all over the VMs. There is no consideration about contention
in the memory node where the communication buffers are located.

We proposed an inter-VM communication scheme to accelerate communication
among VMs. The CORE kernel performs two operations: contention monitoring and
buffer location decision. First, the guest OS periodically acquires the number of cache
misses of each physical core from the hardware monitoring module described in Sec-
tion 4.1. The guest OS then maintain a latency expectation table for each sender and
receiver node combinations. It includes past histories of the memory copy latency from
the source node to the buffer in the destination node.

Based on the collected past histories of memory copy latency, the dom0 performs a
buffer selection procedure for each VM pair. When communication paths are set up, a
VM pins buffers to each memory node. The number of buffers on a node is the same
number of VMs. Whenever two VMs try to communicate, the dom0 allocates a buffer
using locations of those VMs and the monitored memory copy latency.

We apply a buffer pipelining technique for efficient buffer usage. In the scheme,
a buffer is divided into several blocks. A sender can write another block-sized data
though the receiver does not read previously written data. Conversely, A receiver can
read existing data regardless of the sender’s operation. This technique is effective when
VMs exchange large data via memory sharing and direct memory copy. Overall data
transfer time depends only on the memory-to-memory copy time.

7. APPLICATION: QR DECOMPOSITION

We chose QR decomposition as our application, which is a decomposition of single ma-
trix into a multiplication of two matrices, A = QR. In the equation, a given matrix A is
decomposed into two matrices, Q and R. Here, Q matrix is an orthogonal matrix, which
satisfies QT = Q−1. R matrix is upper triangular matrix, which has nonzero elements
only at the upper right part of the matrix, and zeros for other part. This decomposition
is to solve linear equations and to generate Eigenvectors with following equations:
Ax = b, QRx = b, QT QRx = Rx = QT b. Tiled QR decomposition [Buttari et al. 2009;
Bouwmeester et al. 2011] divides a matrix into rectangle tiles and distributes them to
processors or computing devices to parallelize it.
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Fig. 13. An operation flow for tiled QR decomposition allocator.

In our system, which can utilize both manycore CPU and multi GPU, the QR decom-
position can be accelerated easily using massive parallel cores. Because parallelism
of GPU is better than CPU’s, just calculating almost tiled QR steps on the GPU can
make speed faster. If there are multiple users to request QR decomposition, however,
because each GPU kernels are not preemptive, the wait time to use GPU for each user
will be increased. Also, if workloads mostly want to use GPUs, utilization of CPU cores
will not be enough, compare with GPUs.

Figure 13 shows a flow of our QR decomposition allocator module. On the first step,
it monitors currently utilizable devices, speed for each request, and the input matrix
size. Second, it will decide tile size to minimize cache refresh, decide how many and
which devices should be participated, and allocate tiles into decided computing devices.
Here, tiles with larger workload will be allocated faster device, and tiles with memory
dependency will be allocated together. Of course, if input matrix size is large, multiple
devices can be allocated together. Finally, after execution on each device, the result
matrices will be returned to corresponding user.

8. EVALUATION

In each evaluation, hardware specification is as following unless otherwise noted.
Manycores and M2 DRAM related experiments were done on HP DL585 G7 with 64
physical CPU cores and 128 GB DRAM. Because we cannot find manycore CPU with
on-chip DRAM and DIMM-compatible NVRAM memory, we simulated the on-chip M1
DRAM and off-chip M2 NVRAM. NVRAM parameters are shown in Table III.

8.1. Performance Effect of Memory Balancing

To evaluate the effect of memory transfer speed to the one-time memory transfer from
victim VMs to a beneficiary VM, we measured the elapsed time to reclaim the desig-
nated number of page frames. By default, all the VMs were initially allocated 256MB
of memory and configured with 512MB as their highest possible memory allocation.

Figure 14 shows the elapsed time of one-time memory reclamation from the num-
ber of victim VMs. As the number of page frames reclaimed at one time increases, the
elapsed time increases fast. The number of victim VMs influences the page frame recla-
mation speed. The more victim VMs, the longer the elapsed time to reclaim designated
number of page frames. Faster transfer of page frames enlarges the amount of free
memory when the guest OS requires them. It reduces the number of time-consuming
memory reclamation trials if there is not enough free memory. As a result, the guest
OS can respond faster to the memory allocation request of user application.

8.2. Performance of Runtime VM Migration

To evaluate our runtime VM migration algorithm targeting data access performance
QoS per VM, we used the AMD Opteron NUMA machine with 4 nodes each of which
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Fig. 14. Effect of balancing methods on one-time memory
transfer among VMs.

Table III. Memory Specification

Power characteristics
Parameter DRAM PRAM

Read Energy 3.2uJ 3.2uJ
Write Energy 3.2uJ 16uJW

Idle Power 1.3W/GB 0.05W/GB

Timing characteristics
Parameter DRAM PRAM

Read 15ns 28ns
Write 22ns 150ns

Table IV. List of Workload Sets for Evaluation

Set
#

Workload of each 4-VM group
initially placed in Node Config. for Required Data Access Latency,

ReqLi (C = Cycles)1 (VM1-4) 2 (VM5-8) 3 (VM9-12) 4 (VM13-16)

W1 libq. omn. gcc bzip2 1. W∗(60 or 80)’s ReqLi = 60 or 80 C, respectively.
2. W∗(mix)’s ReqLi

= (60 C for the first two VMs in a 4-VM group.
80 C for the rest VMs.)

W2 libq. libq. bzip2 bzip2
W3 omn. omn. bzip2 bzip2
W4 gcc gcc bzip2 bzip2

is configured with 4 cores, a shared cache, a memory controller, and 1GB DIMM. The
algorithm consumes a negligible amount of CPU cycles and system memory bandwidth
(1% of a cores and 0.3% of the entire system memory bandwidth, respectively). In
all experiments, we simultaneously ran 16 VMs executing various SPEC CPU 2006
workloads shown in Table IV. To see whether the QoS of a VM is kept or not, we
compare the execution time of the workload running on the VM with the expected
execution time of the workload (which was obtained preliminarily). For comparison,
we did the same experiments also under Pinning (with no migration) and DINO (with
the migration for system-wide memory access performance).

Figure 15(a) describes the average execution time slowdown under various workload
sets shown in Table IV and various algorithms (Pinning, DINO, and ours). The value
greater than zero means that the QoS of 16 VMs is not kept well on average. W∗(60)
and W∗(80) indicate that a VM in each configuration expects 60 and 80 CPU cycles for
its average memory access latency, respectively. In case of W∗(mix), a half of 16 VMs
expect 60 CPU cycles while the rest of them expect 80 CPU cycles for it. In almost
all configurations, ours shows the lowest value of the average slowdown over those of
Pinning and DINO. Under Pinning, the VMs running the workload with heavy memory
access loads (e.g., libquantum) can compete with each other for a memory controller.
This situation cannot be resolved as Pinning does not do any VM migration at all.
Also, under DINO, a VM running the workload with light memory access loads (e.g.,
bzip2) will be migrated to share the same memory access path with a VM running the
workload with heavy memory access loads. While DINO believes that this migration
policy increases system-wide memory access performance, it makes the former VM
suffer from the delay due to the heavy contention. In the other hand, ours dynamically
and timely migrates VMs when it notices those VMs not receiving expected memory
access performance. Figure 15(b) describes the slowdown values of individual VMs
under W1(60) configuration. As we mentioned, Pinning shows high slowdown values
for the VMs executing libquantum and DINO shows high slowdown values for the VMs
with bzip2. In maximum, ours only has 11% of the slowdown while Pinning and DINO
shows 38% and 33.4%, respectively.
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Fig. 15. Data Access Performance QoS under various algorithms.

Fig. 16. Execution times of selected benchmarks with the proposed scheduler compared with default Linux
scheduler. Access latency of DRAM : NVRAM (read) : NVRAM (write) is set to (a) 1:1:3, (b) 1:3:8.

8.3. Performance of Hybrid Main Memory-aware Task Scheduling

We first evaluated the performance of the scheduler. We ran the SPEC CPU2006 bench-
mark [SPEC 2012] on Intel i7-960 (3.2GHz) and 6GB of DRAM, with Linux 2.6.38.2.
Here, we assumed that both types of memory are controlled by a controller. Because
NVRAM is not yet available for main memory and commercial processors have no
per-task performance monitoring functionality, we used a Pin tool [Luk et al. 2005] to
simulate both features. We attached a Pin tool and generated more consecutive mem-
ory access requests to simulate different latencies of read and write to NVRAM main
memory. We also utilized the tool as an extended powerful performance monitoring
unit to collect per-task memory access frequencies. It collects the number of reads and
the number of writes to both types of memory for each task separately.

Figure 16 shows preliminary experimental results of the scheduler. Here, we used
two access latency ratios of DRAM, NVRAM read, and NVRAM write, which is sim-
ilar to the state-of-the-art STT-RAM and PRAM specification. With the first latency
configuration, only NVRAM write is three times longer than others. The second la-
tency configuration of DRAM : NVRAM (read) : NVRAM (write) is set to 1:3:8. With
both latency configurations, latency-sensitive and CPU-intensive tasks execute faster
because of their higher priority. Though several tasks are slightly hurt their perfor-
mance, bandwidth-sensitive tasks can get some performance gain in spite of the use of
same memory controller.
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Table V.
Workloads set for polymorphic memory evaluation with multi-programs. Selected

benchmarks are from SPEC2006 benchmark suite

# Workloads # Workloads # Workloads
1 mcf,omnetpp,astar,soplex 12 bzip2,libquantum,omnetpp,milc 23 bzip2,sjeng,omnetpp,soplex
2 mcf,omnetpp,milc,soplex 13 libquantum,omnetpp,milc,lbm 24 bzip2,gobmk,omnetpp,lbm
3 omnetpp,astar,milc,soplex 14 mcf,sjeng,h264ref,omnetpp 25 gobmk,h264ref,omnetpp,lbm
4 bzip2,gcc,libquantum,lbm 15 mcf,sjeng,omnetpp,namd 26 h264ref,omnetpp,namd,povray
5 gcc,hmmer,libquantum,lbm 16 sjeng,omnetpp,milc,namd 27 bzip2,sjeng,h264ref,povray
6 bzip2,hmmer,libquantum,lbm 17 mcf,sjeng,milc,name 28 gcc,mcf,hmmer,lbm
7 gobmk,sjeng,h264ref,namd 18 sjeng,libquantum,namd,lbm 29 mcf,omnetpp,milc,lbm
8 gobmk,h264ref,namd,povray 19 bzip2,sjeng,libquantum,namd 30 omnetpp,astar,milc,namd
9 sjeng,h264ref,namd,povray 20 libquantum,h264ref,namd,lbm 31 bzip2,gcc,namd,lbm
10 bzip2,mcf,omnetpp,lbm 21 bzip2,gcc,hmmer,lbm
11 mcf,libquantum,milc,lbm 22 mcf,h264ref,omnetpp,lbm

Fig. 17. Average performance results of multi-program workloads with various polymorphic memory
configurations.

8.4. Performance of Polymorphic Memory

We built a simulator based on Pin [Luk et al. 2005] instrumentation tool to evaluate
performance effect of the polymorphic management technique. To evaluate various
multi-program cases, we configured 31 benchmark sets with the workloads in SPEC
CPU2006. Table V summarizes 31 sets of workloads. Each set was classified by the
access frequency and the page coverage.

We measured the performance of the management policy of M1 memory by using
WeightedSpeedup = ∑

i
IPCshared,i
IPCalone,i

[Snavely and Tullsen 2000]. All experiments are con-
ducted for 5 billion cycles, including 1 billion cycles of warming up.

Figure 17 shows the average values of normalized weighted speedup in multi work-
loads. The results show that the performance of M1 memory which means that whole
on-chip memory is used as a main memory is better than that of M2 cache which
means that whole on-chip memory is used as a cache. By using partitioning technique,
the performance can be improved by 2%. In addition, the polymorphic memory can
improve the performance compared to M1 memory cases. The results show that the
performance of polymorphic with 16MB M2 cache is the best and on average, the
performance improvement is 12.72% compared to the case of M2 cache.

8.5. Performance of Hybrid Page Cache

Next we evaluated the performance of hybrid page cache. We ran financial1 workloads
on a trace-driven simulator and the OLTP traces [UMass TraceRepository 2007]. We
selected the values of parameter α, Trmig and Trq as 0.5, 0.5, and 0.35, respectively.

For the amounts of DRAM and PRAM, because PRAM density is expected to be four
times higher than DRAM [Park et al. 2010b; Wu et al. 2009], we mainly allocated four
times larger amount of memory to PRAM in this experiment.
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Fig. 18. Performance and energy consumption comparison for the hybrid page cache with financial1 work-
load. The total number of writes to PRAM directly affects page cache performance.

Fig. 19. Performance and energy consumption comparison for the power-aware hybrid main memory.

Figure 18(a) shows the total number of write accesses on PRAM, which is strictly
related to the total latency of the page cache and the lifetime of PRAM. When using our
algorithm, we can see that the total number of write accesses is reduced compared to
that for the conventional page caching algorithm. We can reduce the total write access
count by a maximum of 52.9%. Figure 18(b) shows the total energy consumption. Here,
our algorithm can reduce the energy consumption by 19.9%. Therefore, we can enhance
the average page cache performance and reduce the endurance problem in the hybrid
main memory.

8.6. Performance and Energy Efficiency of Power-aware Hybrid Main Memory

Figure 19(a) shows energy consumption of the memory system. Here, the energy con-
sumption includes static power (standby power, refresh power), dynamic power (active
power, read power, write power), and migration power. In the cases of mcf, applu, and
mgrid, PRAM only system spent more energy than DRAM only system. Because PRAM
has lower static power but higher write power and write latency, workloads which have
high write operations per instructions spend more time for writing, and this additional
time cancels out profit of low static power. For 5GB hybrid memory system, which is
comprised of 1GB of DRAM and 4GB of PRAM, saves more energy than 2GB memory
system (1GB of DRAM and 1GB of PRAM), because low static power of PRAM take up
the more portion of total energy consumption.

Figure 19(b) shows the memory access time for the read, write, and migration. The
most impactive variable which determines the performance of memory system is the
number of write operations on PRAM. Only DRAM system has the smallest execution
time while only PRAM system has the largest execution time. In case of gzip using
s.chance algorithm, it spent long time because of ping-pong migration of second chance
algorithm. APG system had a delay incremented by 8% compared to only DRAM system
on average, 38% decreased compared to PDRAM or s.chance algorithm.
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Fig. 20. Performance effect and its analysis for core federation with a matrix multiplication workload.
Smaller amount of data transfer significantly reduces workload execution time.

Fig. 21. Performance effect of Core kernel with core federation and inter-VM communication schemes.

Our hybrid main memory management system reduced energy consumption by 36%
while minimizing performance degradation. We can apply our system immediately as
a software patch when PRAM is released, because all these schemes are implemented
in Linux guest OS without additional hardware.

8.7. Performance Effect of Core Federation on Core Kernel

We evaluated the performance of core federation in terms of communication data size by
comparing with a naive approach. We ran a matrix multiplication workload generating
input matrices for size 500 by 500 to 4000 by 4000 with 30% density randomly. We
implemented naive approach as MPI-based partitioning with blocked dense matrix
multiplication [Nimako et al. 2012] for comparison. Here, each slave VM had 8 VCPUs.

Figure 20(a) shows the total execution time of matrix multiplication. We can see that
the core federation improves performance compared to naive approach for every matrix
size. With balancing of the execution time of partitioned thread on core federation, we
could get 81.4% times faster execution time compared to naive approach. Figure 20(b)
shows the total communication data size during the matrix multiplication. Since the
Core Federation parallelizes the matrix by considering the density of matrix and trans-
fers only nonzero data, it has smaller communication data. We could get 33.1% reduced
communication data size compared to naive approach.

In addition, we performed an additional experiment to show the effectiveness of the
core federation and the inter-VM communication schemes on Core Kernel. Figure shows
results with HPL benchmark, where both schemes are turned on. With the benefit of
the lightweight kernel, Core kernel showed better performance even with a single VM.
Because of the enhanced data communication speed shown in Figure 21(c), we could
get improved application performance compared with the application on standard Xen-
virtualized Linux guest OS.

9. RELATED WORK

There were several approaches for efficient management of the manycore server to
overcome the technical limitations of CPU and DRAM.
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As a way to increase the memory bandwidth, [Woo et al. 2010] employs a
3D-stacked memory architecture which is placed in the CPU processor. They propose a
new 3D-stacked memory architecture with a vertical L2 fetch/write-back network us-
ing a large array of through-silicon-vias (TSVs). It shows higher bandwidth and lower
latency than those of conventional DRAM memory. [Kgil et al. 2006; Liu et al. 2005; Loi
et al. 2006] also talked about on-chip memory. Currently, the size of on-chip memory
can be increased up to 16GB in the stack [Woo et al. 2010].

Hybrid main memory architecture of DRAM and NVRAM is a promising architecture
to enhance energy efficiency while preserving accessing performance and providing
larger memory capacity. Qureshi et al. [2009] proposed a hybrid architecture of DRAM
and PRAM where both media are located at the same level.

Several software methods are proposed to manage resources like manycores and
various memory media in the memory hierarchy. In the hypervisor, several researches
have been proposed to optimize memory access performance in the NUMA organi-
zation of the main memory. While the earlier works [Govil et al. 1999; Bligh et al.
2004; VMware 2005] only focused on distance between the VCPUs and the memory
of VMs, recent researches [Majo and Gross 2011; Blagodurov et al. 2011] additionally
considered shared resource contentions. DINO [Blagodurov et al. 2011] suggested a
solution to balance memory access loads across NUMA nodes by migrating the VCPUs
and memory of VMs. While these works with NUMA-awareness have concentrated on
the system-wide performance, our VM placement solution is orthogonal to them as we
tried to guarantee a certain level of memory access performance to each VM especially
under heavy contention among VMs.

For the memory balancing among VMs in the hypervisor, [Waldspurger 2002; Lu
and Shen 2007; Magenheimer 2008, 2009; Zhao and Wang 2009; Schwidefsky et al.
2006] already proposed several memory balancing methods. Zhao and Wang [2009] is
the most recent work in the memory balancing area. It decides the proper memory
size of each VM through working set size estimation. In Zhao and Wang [2009], the
victim VMs inflate the balloon driver to release memory, and the beneficiary VMs
subsequently deflate the balloon driver to make the guest OS control the acquired
memory. It utilizes its own memory reclaiming policy with regard to the victim page
selection of the guest OS. However, the policy also causes a swap out or data flush of
dirty pages to the corresponding storage location in accordance with the policy of the
guest OS. Feedback directed ballooning [Magenheimer 2008] also mentioned a similar
solution with the same weak points. We expect that our balancing method is more
efficient and it will also be effective with NVRAM.

From the perspective of the guest OS, several researches [Jiang et al. 2010; Woo et al.
2010; Iyer 2003; Zhang et al. 2004] introduced on-chip DRAM as a last level cache. It
shows a good performance gain with memory-intensive applications, but Zhao et al.
[2007] pointed out a scalability problem. With the large size up to 16GB [Woo et al.
2010], the overhead of a tag array will grow to several MBs. Previous works tried to
reduce the overhead of the tag array by increasing the cache line size. However, this
increases memory bandwidth and decreases on-chip memory utilization. Furthermore,
in order to access cached data, a cache tag must be accessed first and then data can be
accessed. It doubles the latency for accessing data [Dong et al. 2010].

For the energy efficiency of the main memory structure, [Park et al. 2011b] sug-
gested a power saving technique reducing the refresh energy of DRAM. Rank-based
Page Placement (RaPP) [Ramos et al. 2011] is proposed as a memory management
mechanism designed for hybrid main memory, using rank-based migration techniques
to provide lower energy-delay. Regardless of the implementation method, hotness of
the past may misplace pages with dynamically changing access patterns. We tried to
reduce the misplacement like ping pong case by grouping pages. We compared our
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solution with the two previous works utilizing page-level placement. In our previous
works, we propose several management algorithms to utilize hybrid main memory with
DRAM and NVRAM [Park et al. 2010a, 2011a; Shin et al. 2012]. However, they are for
desktop-sized workloads.

For hybrid page cache, LIRS was proposed to solve the problems of LRU [Jiang and
Zhang 2002] by using Inter-Reference Recency (IRR). It selects pages with large IRRs
for replacement. CLOCK can reduce the overheads of the LRU algorithm, which are
related to the overhead of moving a page to the MRU position on every page hit [Bansal
and Modha 2004]. CLOCK-Pro [Jiang et al. 2005] was also proposed based on CLOCK,
which is a simple approximation of the LRU replacement algorithm [Corbato and MAC.
1968; Carr and Hennessy 1981]. It covers the ways how LIRS and CLOCK work. In
addition, several caching algorithms such as FBR [Robinson and Devarakonda 1990],
LRU-2 [O’Neil et al. 1993], 2Q [Johnson and Shasha 1994], LRFU [Lee et al. 2001],
and MQ [Zhou et al. 2001] were proposed to combine recency and frequency. They tried
to compensate for the LRU’s disadvantages from sequential or cyclic access pattern
with larger than cache. However, all these methods cannot consider different physical
properties of hybrid memory.

For inter-VM communication operations, XenSocket [Zhang et al. 2007] provides
socket interface with simplified communication path. It reduces overhead from elim-
inating TCP stack. XWAY [Kim et al. 2008] proposed a communication scheme using
shared memory. It intercepts communication requests in the kernel so that the data
is sent through XWAY switch if destination IP is in local machine. However, both ap-
proaches did not consider different memory access latencies from NUMA architecture.

10. CONCLUSION

As manycore system accommodates multiple guest OSes and tasks inside them, re-
source management become a key issue. More concurrent tasks increases needs for
larger and faster memory hierarchy, memory wall decreases benefit from the concur-
rent executions of tasks, especially in the virtualized environment. To provide enough
computing resources for consolidated VMs in a energy-efficient manner, we targets
a manycore system with a memory hierarchy of on-chip DRAM, off-chip DRAM and
off-chip NVRAM. In this article, we provided the MN-MATE, an energy-efficient, full-
fledged resource management system for consolidated VMs in a single hardware node.
We proposed a runtime placement policy of consolidated VM and a memory balancing
scheme among them in the hypervisor. On top of this, We build two guest OS kernels,
Linux and our own lightweight kernel named CORE kernel. With the balanced CPU
and memory resources, we proposed a resource-aware task scheduling algorithm, poly-
morphic management scheme of on-chip/off-chip DRAMs, and data placements and
management policies for hybrid main memory of off-chip M2 DRAM and off-chip M2
NVRAM for the Linux guest OS. We also build a simplified kernel to accelerate execu-
tion of scientific applications through NUMA-aware buffer selection mechanism. Conse-
quently, MN-MATE significantly enhanced system performance with the new hardware
system with an improved energy efficiency. We can see performance improvement with
our applications, core federation and QR factorization. The experiment results show
that MN-MATE outperforms other competing resource management schemes in terms
of application execution time and energy consumption.
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