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Abstract—Hardware security modules (HSMs) have been uti-
lized as a trustworthy foundation for cloud services. Unfortunately,
existing systems using HSMs fail to meet multi-tenant scalability
arising from the emerging trends such as microservices, which
utilize frequent cryptographic operations. As an alternative, cloud
vendors provide HSMs as a service. However, such cloud-managed
HSM usage models raise security concerns due to their untrusted
and shared operating environment. We propose ScaleTrust, a
scalable and secure system for key management. ScaleTrust allows
us to scale the number of virtual HSM partitions, each of which
is isolated with respect to each other and is robust against cloud
insider attacks, while preserving physical isolation of the root
of trust. To enable this, ScaleTrust uses Intel SGX and multiple
HSM features, such as restricting key usage by controlling key
attributes of in-HSM keys and establishing a secure channel using
only HSM commands. Finally, we apply ScaleTrust to four real-
world systems: Keyless SSL for TLS private key offloading, JSON
Web Token authentication for microservices, key provisioning,
and encryption in database systems. Our evaluation shows that
ScaleTrust achieves multi-tenancy in a scalable way by providing
multiple virtual HSMs with legacy HSM devices that are designed
to support a single tenant. ScaleTrust provides security against
insider threats while incurring 11.9% and 39.0% of end-to-end
throughput and latency overhead for Keyless SSL compared to
stand-alone HSMs.

Index Terms—hardware security module (HSM), trusted ex-
ecution environment (TEE), key management service (KMS),
scalability, cloud computing security

I. INTRODUCTION

HARDWARE security modules (HSMs) have served as a
foundation of trust in the remote computation for cloud

and edge services. Their applications span diverse domains,
including certificate authorities (CAs) in public key infrastruc-
ture [7], e-commerce payment [28], and DNSSEC [21]. An
HSM enables secure cryptographic operations (e.g., signing
certificates) while providing physical isolation of cryptographic
keys—plain-text keys never leave the HSM.

Unfortunately, scaling out on-premises HSMs involves
significant capital investment and increases management com-
plexity [15], [19]. The demand for service-level isolation has
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led to HSM partitioning, which virtualizes a physical HSM
with isolated key protection [79]. However, due to limited
hardware resources, state-of-the-art HSMs can only provide a
limited number (∼100) of HSM partitions [84]. Fundamentally,
hardware-based isolation of in-HSM keys cannot meet the
growing demands of emerging IT technologies, such as
microservice architecture [20] and Keyless SSL [63], which
require frequent inter-service cryptographic transactions [98].

To resolve the scalability issue, two approaches have been
proposed. The first option is to entirely shift cryptographic
operations to software-based key management service (KMS)
modules and to leverage a commodity trusted execution
environment (TEE) [19], [35]. Compared to HSMs, this
achieves cost-effective horizontal scalability, as it utilizes
commodity servers. However, this approach tampers with
HSM-grade security properties such as physical separation and
tamper-resistance that existing regulations [49] require, thus
impeding its adoption in practice. For example, Canadian and
U.S. governments require compliance with federal information
processing standards (FIPS) 140-2 [1], which mandate physical
separation for certification level 3 and above.

Another option is to utilize on-cloud key management
services (KMS) [8], [58] that provide cloud-backed FIPS-
validated HSMs in a virtualized form. However, this introduces
fundamental security problems due to the untrusted nature
of cloud platforms [13], [30]. Cloud KMSs are managed by
untrusted cloud providers [78] and do not offer any protection
against insider threats. For example, malicious software running
in a cloud instance can obtain credentials to access HSMs
and issue unauthorized commands to extract in-HSM keys
Furthermore, a naı̈ve approach to enable multi-tenancy by
sharing an HSM (or an HSM partition) across multiple tenants
causes security issues because it does not provide isolation
across virtual partitions. For example, a malicious insider
sharing an HSM with other tenants can execute malicious
commands on the HSM to abuse the tenants’ keys.

This paper presents ScaleTrust, which provides scalable and
secure virtualization of legacy HSMs in a cloud environment.
Specifically, ScaleTrust is designed to scale the number of
virtual HSM partitions to accommodate multiple tenants while
providing security against cloud insiders who control the HSM.
ScaleTrust is also vendor-neutral—any legacy HSM can be
used with ScaleTrust to scale the number of virtual HSM
partitions for multi-tenancy.

To secure the root of trust, ScaleTrust preserves the physical
separation property. It creates a logical partition (vHSM) inside
the HSM and bootstraps a secure communication channel
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between vHSM and client, which is secure against the malicious
insider. This is enabled by utilizing a combination of PCKS#11
commands. For this, a trusted intermediary SGX enclave
translates the user command to a series of HSM commands.
However, because a user establishes a direct secure channel
with vHSM, the intermediate enclave does not observe any
plain-text keys, which makes ScaleTrust resilient to SGX side-
channel attacks that try to leak HSM-generated keys. Finally,
to ensure vHSM isolation, ScaleTrust detects any unauthorized
key usage via log verification. ScaleTrust can unequivocally
detect any key misuse attempts from a malicious insider.

We present a rigorous security analysis of ScaleTrust in
§ VIII. Our application case studies demonstrate that ScaleTrust
is capable of efficiently scaling out virtual HSM partitions when
applying ScaleTrust to four real-world systems: JSON Web
Token authentication for microservices, Keyless SSL for TLS
private key offloading, data encryption and key encryption in
database systems. Our evaluation results show that ScaleTrust
incurs performance and HSM key storage overhead for securing
key management operations; ScaleTrust has 11.9% and 10.2%
of end-to-end throughput overhead for Keyless SSL and JSON
Web Token authentication service, respectively, and 8.14% of
HSM key storage overhead compared to a stand-alone HSM,
which does not provide protection against malicious insiders.

Our key contributions are as follows:
• A new HSM usage model that achieves both security and

cost-effective multi-tenant scalability in key management.
• Design and implementation of secure key management

operations for an HSM card with limited PKCS #11
APIs, which enables secure channel establishment and
isolation across virtualized HSMs in a shared operating
environment.

• Security analysis that demonstrates how ScaleTrust pro-
tects against attacks on each system component.

• Application case studies of ScaleTrust with performance
evaluation that show practical benefits of our prototype.

II. BACKGROUND ON HSM AND KMS
A Hardware Security Module (HSM) is a crypto-processing

device that securely manages digital keys and performs
cryptographic operations. To access an HSM device, a client
typically uses public key cryptography standard (PKCS)
#11 [52], which defines cryptographic operation APIs, such as
key generation, encryption/decryption, and signing/verification.
Using the PKCS #11 APIs, a client first establishes an HSM
session, through which it issues commands. Note that HSMs
support concurrent command execution across multiple sessions
for high performance. The following summarizes four key
security properties provided by HSMs widely used in cloud
environments [7], [42], [57], [83].
FIPS-validated components. FIPS 140-2 regulations [1]
strictly mandate that an HSM should provide hardware isolation,
physical tamper-resistant protection, and self-destruction on
hardware tamper events. The FIPS regulations also require
HSMs to use FIPS-approved cryptographic algorithms with
validated software implementations [86].
Key attributes. A client can set the access and usage policy
of a key in an HSM by specifying key attributes when the
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Figure 1: Security limitations of HSM-backed Cloud KMS.

key is generated or imported (unwrapped). For example, if
the extractable attribute of a key is set to true, the key
is extractable from the HSM, and if its unwrap attribute is
set to false, the key cannot be used to perform unwrapping
operations. In addition, an unwrapping key can have an
unwrap_template, which consists of a set of key attributes
and restricts all keys that are unwrapped by the unwrapping
key to include the same key attribute values.
Key authentication. HSMs support public key confirmation
(PKC) [81] that provides an HSM-signed certificate for a
non-extractable RSA key pair. In this certificate, the key pair
is signed by an HSM-specific hardware key and an HSM
manufacturer’s key. Therefore, anyone with the HSM vendor’s
root certificate is able to confirm whether this RSA key pair
originates from the specific HSM with the hardware key.
Log integrity. To support auditing of HSM events, an
HSM generates log messages, each of which contains a
communication session ID, an HSM command type, a stored
key handle, and a chain of HMAC digests that ensures the
message integrity. The HMAC key for the digests is kept in
the HSM’s protected memory, and the HSM encrypts this key
when exporting it. Thus, HSM users cannot directly obtain the
key in plain-text; however, only legitimate HSMs manufactured
by the same vendor are able to import the HMAC key after
decrypting the encrypted key. Given an HSM, HSM users are
able to confirm whether generated log messages originate from
the HSM and have not been changed by adversaries. HSM
users verify the integrity of generated HSM logs by sending a
log verification request to this HSM.
Key management services (KMS). A KMS typically builds
the two-level key hierarchy [8]. A master key is used to
encrypt/decrypt a client’s data key as a key wrapping key
or perform security-sensitive key operations, such as TLS
private key operations. ScaleTrust follows the above usage
model. A KMS typically uses the master key only within the
HSM that is protected by a personal identification number
(PIN) or password-based authentication [6], [41], [61]. Clients’
data keys are used in the client system to perform client-side
cryptographic operations (e.g., database table encryption). To
store the data keys encrypted at rest, the client requests the
KMS to encrypt the keys using the master key.

III. MOTIVATION

Insider threat in cloud KMS. HSM-backed cloud KMS
virtualizes HSMs [5], [8], [33], [58] by providing virtual
partitions. In particular, it adds a level of indirection to isolate
each tenant even within the same HSM partition, enabling
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this approach to be more cost-effective than using dedicated
HSMs [90].

However, this model suffers from a fundamental security
limitation; it provides no protection against a malicious insider
(i.e., a cloud provider) who has control over the HSM. This is
a fundamental problem because the HSM credential is kept by
the cloud provider and all HSM access, including access to the
log, goes through a cloud intermediary. For example, in Cloud
KMS, the KMS relays a client’s request to the HSM instead of
directly establishing a secure channel between the client and the
HSM. This Man-in-the-Middle (MitM) environment allows the
KMS to fully control communications between the client and
the HSM, as shown in Figure 1. The malicious KMS can freely
eavesdrop on their traffic and even send arbitrary commands to
the HSM, thus leaking or misusing a client’s secret key. Worse
yet, this can go undetected because the insider can modify the
KMS log, which is signed by the cloud KMS provider [11],
[46].
Limitations of existing approach. To address this issue, a
recent approach employs a hybrid solution [31] that utilizes
SGX enclaves with an HSM to mitigate this insider threat.
In particular, this solution replaces the KMS in the cloud
environment with SGX, establishing a trusted computing
environment that offers confidentiality and integrity. This hybrid
approach indeed addresses security threats that this malicious
insider poses but does not protect the client’s secrets from
SGX side-channel attacks. Recent studies have shown that SGX
suffers from various types of side-channel attacks [34], [51],
[73], [92], [93], [95], [97], which significantly undermine the
secrecy of client’s keys that the HSM generates. Unfortunately,
existing solutions rely on the confidentiality guarantee from
SGX, and their enclaves manage cryptographic keys in plain-
text forms. Therefore, with SGX side channel attacks, these
solutions can be easily broken, leaking the secrets. Even worse,
existing techniques to prevent SGX side channels are either
impractical [3], [4], [65], [71] (e.g., 50x slowdown [3]) or only
covers specific types of attacks [36], [76].

IV. DESIGN GOALS

Motivated by the limitations of existing KMS, we propose
ScaleTrust, designed to achieve four goals:

• G1: Protection against insider threats. ScaleTrust must
ensure protection against malicious insiders in a cloud
environment.

• G2: Key usage isolation for multi-tenancy. ScaleTrust
must support multi-tenancy using legacy HSMs. In pro-
viding multi-tenancy, it must ensure isolation—a property
in which only the tenant who created a master key in the
HSM can access the key.

• G3: FIPS-grade protection for the root of trust.
ScaleTrust utilizes FIPS-validated HSMs to ensure physi-
cal separation of master keys.

• G4: SGX side-channel attack mitigation. ScaleTrust
must protect itself from attackers who try to achieve HSM-
generated keys using SGX side-channel attacks.

Threat model and assumptions. We assume that a powerful
adversary attempts to directly obtain or abuse cryptographic

keys stored in an HSM or CPU-hardened trusted execution
environments (TEEs). The adversary shares the same host
or cloud platform with victims. He/she also has full control
over the system software, such as the operating system and
the hypervisor [12], [13], [69]. The adversary is thus able
to forge the communication between the users and HSMs by
manipulating the system memory. In addition, we assume that
an attacker can even leak HSM-generated keys in enclaves
using side-channel attacks [51], [97]. However, this adversary
is not powerful enough to break an enclave’s integrity nor
capable of compromising any confidentiality requirements
that are necessary to guarantee the integrity of the SGX
ecosystem (e.g., an attestation key in the quoting enclave
remains secure) [94], [96]. It is worth noting that such attacks
are more difficult than attacking application enclaves because
attacks against platform enclaves (e.g., quoting enclave) rely
on specific types of micro-architectural vulnerabilities [92],
[96]. Also, the security of quoting enclaves is essential for the
SGX ecosystem; it is of utmost concern for SGX maintainers,
including Intel and Microsoft. For quoting enclaves, they
apply up-to-date compilation techniques, use small TCBs (the
size of the Intel-signed quoting enclave prebuilt is 885KB),
and promptly remediate potential threats. Unlike the quoting
enclave, application enclaves tend to have a much larger attack
surface and are more likely to have gadgets that can be exploited
(e.g., page-table-based [97] and branch shadowing side-channel
attacks [51]).

Finally, we assume HSMs are trustworthy. For instance,
HSMs always perform reliable cryptographic operations as
well as logging. Likewise, we assume that a PKC certificate
from an HSM is trustworthy and that a client can verify its
authenticity using the HSM vendor’s public key. We also trust
the SGX enclave’s code integrity and a verification of (SGX-
enabled) the platform’s genuineness, supported by SGX remote
attestation. Defense against denial of service [56] attacks and
code vulnerabilities in HSM [14] or enclave [50] are outside
the scope of this paper.

V. SCALETRUST APPROACH AND CHALLENGES

We envision a secure and cost-effective HSM virtualization
built on top of minimal trusted components—an HSM and an
SGX enclave—without trusting the cloud platform provider.
ScaleTrust supports FIPS-grade protection, with HSMs serving
as the root of trust, while enabling key isolation among different
clients by co-utilizing SGX enclaves. However, this involves
solving non-trivial challenges. We first describe a strawman
design that highlights the challenge.
Strawman approach: Naı̈ve TEE adoption. A strawman
approach is to use an SGX enclave that serially relays each
HSM command from clients to the HSM and verifies whether
the HSM executed exactly the same command in the same
order by inspecting the HSM log. However, this approach does
not prevent attackers from issuing malicious HSM commands,
such as exporting a secret from HSMs. Furthermore, attackers
can observe the communication channel and/or even truncate
HSM logs to hide their key usage logs.
Challenges in secure communication. To solve this problem,
we first need to establish a secure channel between an HSM
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Figure 2: Deployment model of ScaleTrust ( 1 - 4 : Workflow of ScaleTrust presented in § VI-A).

and enclaves without trusting the underlying cloud platform.
However, this is not trivial in this context because a PCIe HSM
supports limited cryptographic interfaces such as PKCS #11
APIs. In particular, these APIs do not support in-place signing
operations (i.e., signing an in-HSM key with another in-HSM
key), which make building a TLS-like authenticated channel
challenging. For example, an HSM alone is not able to conduct
a TLS handshake involving a Diffie-Hellman key exchange
because the HSM is unable to sign the DH parameter by itself
without other components that initiate the signing procedure.
This dependency enables MitM attackers to easily intercept the
encrypted communications or to impersonate each endpoint.
Protecting keys against malicious insiders. Because an
HSM is a cryptographic black box, inspecting HSM logs is
the only way to detect malicious HSM commands that the
HSM performed. However, identifying malicious key usage
from the log is not trivial for two reasons: 1) Different cloud
tenants share the same cloud-managed HSMs; thus, HSM logs
are multiplexed by numerous cloud clients. 2) The malicious
insider can launch MitM attacks to truncate log messages
because the logging system is only designed to ensure the
integrity of consecutive log messages with a sequence of
chained HMACs [80] and truncated log messages still hold
valid cryptographic proofs. When a cloud KMS relays client
requests to the HSM, a malicious insider can insert a WrapKey
command, which extracts in-HSM keys. Then, the attacker
can truncate the log sequence to hide the behavior, making it
difficult to detect the ongoing attack.

VI. SYSTEM DESIGN

ScaleTrust achieves the aforementioned goals by co-utilizing
HSMs and SGX enclaves, as shown in Figure 2. ScaleTrust
utilizes HSMs to support physical separation for storing
multiple clients’ master keys (i.e., multi-tenancy). The enclaves
in ScaleTrust work in tandem to 1) isolate the use of keys in
the HSM for each client and 2) support secure communication
between an HSM and KMS clients.

A. Workflow: Building a Chain-of-Trust

System overview. Figure 2 presents an overview of our system.
The cloud side of ScaleTrust consists of an HSM and two types
of enclave threads that share enclave memory:

• HSM Commander Thread (Commander) acts as a
secure bridge between an HSM and a KMS client, isolating
in-HSM key usages for each client.

Key type Purpose Key abuse protection

vHSM key
Identify vHSM,
Authenticated root of trust,
Unwrap secrets

Non-extractable,
Unwrap-only,
Unwrap template

Shared secret Client ← HSM secure channel Non-extractable,
Wrap-only

One-time pad Client → HSM secure channel Erase after use

Table I: ScaleTrust keys used for secure communication.

• Log Auditor Thread (Auditor) detects any unauthorized
access to in-HSM keys by verifying the HSM log.

We now describe step by step how ScaleTrust uses keys in
the HSM.

1 A ScaleTrust run-time at the client establishes a commu-
nication channel with the commander and authenticates the
integrity of the commander enclave through remote attestation.
If it succeeds, the run-time establishes a TLS channel with the
commander. After that, when a client issues an HSM operation
request, the run-time translates the request into a sequence of
HSM commands (§ VI-C) and sends them to the commander
through the TLS channel.

2 Upon receiving the sequence of HSM operations, the
commander issues the commands to the HSM through the
PCKS#11 API. As part of the process, a virtual HSM partition
is created and a secure channel between the client and the
partition is established (§ VI-B).

3 - 4 The commander, with the help of a log auditor, verifies
whether the client’s request was executed in isolation. If the
verification fails, the commander revokes the HSM execution
results and informs the client (§ VI-D). Otherwise, the client
receives the execution result from the virtual HSM partition
through the secure channel.

B. Bootstrapping Secure Channel

ScaleTrust uses the PKCS #11 interface to bootstrap a
virtual HSM partition (vHSM) and a secure communication
channel between the client and vHSM, which preserves the
confidentiality, integrity, and authenticity of communication.
The use of a secure channel ensures that only the vHSM
dedicated to a client is able to decrypt the HSM responses,
while the commander enclave which relays the communication
cannot access the responses in plain-text. Table I summarizes
ScaleTrust’s keys used for secure communication.

A virtual HSM partition provides an illusion that a client has
exclusive access to the in-HSM keys when in reality, multiple
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tenants share a single HSM. A vHSM is identified by the
vHSM key (public) that a client holds.
vHSM creation. A vHSM is created by establishing a vHSM
key that is a non-extractable RSA key pair stored in the HSM.
The private key never leaves the HSM (non-extractable) because
the key serves as the root of trust for other keys subsequently
derived from the vHSM and a public key confirmation (PKC)
certificate [81] signed by it that proves keys were generated
by the vHSM.

Since the vHSM key is used to identify a vHSM, it must
be handed over to the client. However, since the response
of the HSM can be observed or manipulated by MitM
attackers, ScaleTrust must authenticate the vHSM public key,
without exporting the private key. For this, we issue a PKC
certificate [81] that builds a chain of trust starting from the
HSM vendor’s root certificate, which is publicly available.
Establishing shared secret. After receiving the vHSM public
key from the commander enclave, ScaleTrust establishes a
shared secret with the vHSM for secure communication. To
share a secret, the client sends an encrypted secret key using the
public key. The vHSM then decrypts and stores the secret key
in the HSM using the private key (UnWrapKey). This ensures
that the plain-text secret key is accessible only to the client
and the vHSM but is not visible to the commander.

In a normal environment, establishing a shared secret would
be sufficient for bootstrapping a secure communication channel.
However, this is not the case for ScaleTrust due to our unique
threat model, which assumes the insider (and side-channel)
threat. When the HSM sends an encrypted message using the
secret key, an insider can observe the message and issue an
HSM command to decrypt the message to obtain plain-text.
To prevent this, we set the attribute of the secret key such
that it can be used only for encryption but not for decryption.
To automatically enforce such an attribute upon importing a
secret key, ScaleTrust sets the unwrap template attribute of the
vHSM key such that all keys unwrapped by vHSM keys can be
used only for encryption. ScaleTrust verifies this property by
issuing an unwrap request to HSM using the secret key upon
creation of a vHSM. Verification succeeds when ScaleTrust
detects a decrypt failure log message. Details of log verification
are presented in § VI-D.
One-time pad. Since the shared secret key cannot be used
to decrypt a message within the HSM, ScaleTrust utilizes a
one-time pad (OTP), which is an AES key for building a secure
channel between a client and the HSM. When a client requests
a new OTP, the HSM generates an OTP (GenerateKey),
encrypts it using the shared secret (WrapKey), and exports
the encrypted OTP to the client. The client then obtains the
OTP by decrypting it using the shared secret and uses the OTP
to encrypt a client-side key or data before sending it to the
HSM.

Note that a naı̈ve design of using the vHSM key pair instead
of an OTP is not secure, because malicious insiders can issue
HSM commands to use the vHSM private key to recover
the client’s key/data after the client finishes key management
operations. Thus, ScaleTrust uses the ephemeral OTP, which
is erased from the HSM memory (DestroyObjects) at
the end of a key management operation, thus mitigating

PKCS #11 API Additional protections Restrictions

Key generation Key encryption before store None
Encrypt Data encryption in request Size ≤ 512 B
Decrypt Data encryption in response Size ≤ 512 B
Sign/Verify/(Un)Wrap None None

Table II: PKCS #11 APIs that ScaleTrust supports and
additional security protections.

insider threats. To prevent the recovery of the OTP after its
destruction, ScaleTrust set key attributes of the shared secret
to be non-extractable and wrap-only and the vHSM key to
be non-extractable and unwrap-only, as shown in Table I, and
disables the modifiable attribute of the keys, preventing the
modification of key properties. ScaleTrust also detects key
abuse during the key establishment phase by conducting log
verification (explained in § VI-D).

C. Key Management Operations

ScaleTrust exposes PKCS #11 APIs as existing KMSs;
however, its underlying procedure is different. Unlike an
existing KMS that simply relays a PKCS #11 request to
an HSM, ScaleTrust additionally protects its data (e.g., keys
or client data) from insider threats. To do this, its run-time
library at a client communicates with the HSM commander
and manages internal data such as additional keys for secure
channels. Moreover, the library also encrypts and decrypts
sensitive parameters for PKCS #11 APIs. In addition, the HSM
commander translates a client’s request into multiple HSM
commands. Note, the commander can send commands only
to the HSM, and the client has no direct access to the HSM
(Figure 2).

ScaleTrust supports most PKCS #11 mechanisms with some
restrictions, as shown in Table II. In particular, ScaleTrust
encrypts and decrypts only 512 bytes data because ScaleTrust
uses WrapKey/UnwrapKey for translation; these APIs deal with
key data whose size can be 512-byte maximum. We believe
that this restriction does not significantly limit the usability
of ScaleTrust because existing KMS users rarely use KMSs
for generic data encryption due to their prohibitive cost. They
only utilize KMSs for important cryptographic operations such
as signing or key encryption, which ScaleTrust supports.

We describe how ScaleTrust translates user-requested cryp-
tographic operations into a series of PKCS#11 commands to
HSMs.
Key generation. When a user makes a GenerateKey or
GenerateKeyPair request, ScaleTrust performs the following
steps, illustrated in Figure 3a. 1 After receiving a request from
the client, the commander calls PKCS #11 APIs to generate
two keys in the HSM: a client master key (CMK) and an
AES key encryption key (KEK). 2 The commander shares
KEK with the ScaleTrust run-time using a shared secret key
(SK) from a secure channel in the bootstrapping step (§ VI-B).
3 Then, ScaleTrust makes HSM encrypt CMK using the
KEK (i.e., WrapKey) and 4 imports this encrypted client
master key back to the HSM (CreateObject). 5 Finally, the
commander makes the HSM erase the plain-text client master
key and the key encryption key (DestroyObject).
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(a) Key generation.

𝐷𝑒𝑠𝑡𝑟𝑜𝑦𝑂𝑏𝑗𝑒𝑐𝑡 𝑂𝑇𝑃
𝐷𝑒𝑠𝑡𝑟𝑜𝑦𝑂𝑏𝑗𝑒𝑐𝑡 𝐾𝐸𝐾

Erase

HSMCommander

𝐶 , ← 𝐺𝑒𝑡𝑉𝑎𝑙𝑢𝑒 𝐶 ,  
Export

C𝑀𝐾 ← 𝑈 𝐶 ,
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(ScaleTrust run-time)

𝐾𝐸𝐾 ← 𝑈 𝐶 ,  𝐶 ,  𝐶 ,  ← 𝐸 𝐾𝐸𝐾
UnWrapEncrypt

𝐶 ,  

𝐶 ,  
Persistent objects

𝐾𝐸𝐾
Persistent objects

⑤User-requested cryptographic key operations e.g., Encrypt/Decrypt

𝐷𝑒𝑠𝑡𝑟𝑜𝑦𝑂𝑏𝑗𝑒𝑐𝑡 𝐶𝑀𝐾
Erase

①

②

③

④

⑥

(b) Key usage.

HSMCommander

𝐶 ,  ← 𝑊 𝐷𝑎𝑡𝑎
Wrap

𝐷𝑒𝑠𝑡𝑟𝑜𝑦𝑂𝑏𝑗𝑒𝑐𝑡 𝐷𝑎𝑡𝑎
Erase

𝐶 , 𝐷𝑎𝑡𝑎 ← 𝑈 𝐶 ,

𝐶 ,  

UnWrap
𝐶 ,  ← 𝐸 𝐷𝑎𝑡𝑎

𝐶 ,  

Encrypt

Client
(ScaleTrust run-time)

①

②

③

(c) Encrypt.

HSMCommander

𝐶 , ← 𝑊 𝐷𝑎𝑡𝑎
Wrap

𝐷𝑒𝑠𝑡𝑟𝑜𝑦𝑂𝑏𝑗𝑒𝑐𝑡 𝐷𝑎𝑡𝑎
Erase

Client
(ScaleTrust run-time)

𝐶 ,𝐶 , 𝐷𝑎𝑡𝑎 ← 𝑈 𝐶 ,

𝐶 ,𝐷𝑎𝑡𝑎 ← 𝐷 𝐶 ,

UnWrap

Decrypt

①

②

③

(d) Decrypt.

SK: Shared secret key (§ VI-B), OTP : One-time pad (§ VI-B), CMK: Client master key, KEK: Key encryption key,
CM,K : Cipher-text of message M encrypted using key K.

Figure 3: Key management operations in ScaleTrust.

After this key generation completes, the HSM stores the
encrypted client master key (CCMK,KEK ), and the client stores
the key encryption key (KEK). Thus, a malicious insider, who
controls the HSM, is able to retrieve only the encrypted key,
unless it compromises the client.
Key usage preparation. Unlike a vanilla HSM, in which a user
can directly use plain-text keys, ScaleTrust requires additional
steps to restore CMK from the encrypted keys of CCMK,KEK

before using them, as shown in Figure 3b. 1 When a user
requests using a client master key in the HSM, the ScaleTrust
run-time client sends the key encryption key (KEK)—which
was received during key generation—to the HSM. Note, KEK
is sent through the secure channel built with a one-time pad
(OTP ) (§ VI-B). 2 - 3 After sharing KEK, the commander
exports CCMK,KEK from the HSM via GetValue, which was
generated from the previous key generation procedure. It passes
this CCMK,KEK back to the HSM to unwrap (UnWrapKey) it
using KEK. This seemingly redundant procedure is necessary
because PKCS #11 API does not support in-place decryption—
decrypting an in-HSM key with another in-HSM key—so that
the key to be decrypted must be exported first and re-entered
with UnwrapKey. 4 Then, the commander sends requests
to the HSM to erase OTP and KEK (DestroyObject)
to prevent the adversary from obtaining the keys. 5 After
that, ScaleTrust performs a user-requested cryptographic key
operation such as encryption, decryption, or signing. Note
that certain operations (e.g., encryption and decryption) may
require additional procedures to support protection for their

parameters such as encrypting data. Such additional procedures
are discussed later. 6 After its use, ScaleTrust erases the plain-
text client master key (CMK) from the HSM. CMK can be
restored again when needed because CCMK,KEK remains in
the HSM, and the client has KEK.

For optimization, ScaleTrust run-time allows its user to set
a policy for batching. Based on this policy, ScaleTrust can
perform multiple cryptographic operations at batch without
erasing the keys in every operation. This allows ScaleTrust
to avoid this series of key restore operations. Details of the
optimization are explained in § VII.
Encryption. To support the Encrypt command in PKCS
#11, ScaleTrust performs the following steps (Figure 3c), after
the aforementioned key usage preparation. 1 To make an
encryption request, ScaleTrust’s run-time encrypts its data
using the one-time pad (OTP) and sends it to the commander.
Then, the commander unwraps it into the HSM, which also
has the same one-time pad from § VI-B. 2 After that, the
commander wraps data using a previously generated client
master key (CMK) and then returns its results back to the run-
time. 3 Finally, the commander erases its in-HSM data using
DestroyObject, similar to other cryptographic operations.
These steps ensure that the adversary is unable to observe
any keys or plain-text data in ciphertexts. Thanks to the
translation, ScaleTrust securely performs encryption while
malicious insiders in the enclave never observe keys or data
in plain-text.
Decryption. This decryption procedure (Figure 3d) is similar
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HSMvHSM

①Write “nonce1” to the log

HSM Log

SeqNum HSM Event

… …

𝑘 ExternalLog(nonce1)

𝑘 1 GenerateKey(...)

𝑘 2 WrapKey(…)

… …

𝑘 𝑛 1 DestroyObject(…)

𝑘 𝑛 2 ExternalLog(nonce2)

… …

② Identify the starting point of the log 

③Arbitrary key management operation
(n PKCS #11 API calls)

④Write “nonce2” to the log

⑤ Verify the log

: vHSM’s command log : Other entity’s command log

Figure 4: Log verification procedure.

to encryption. 1 The run-time sends previously encrypted data
with the sequence of commands to the commander. Then, the
commander instructs the HSM to unwrap the data in plain-
text using the client master key (UnWrapKey). 2 The HSM
executes WrapKey to encrypt the key using a shared secret
key (§ VI-B), and the commander relays the encrypted key
in the HSM response back to the run-time. 3 After that, the
HSM erases the plain-text data (DestroyObject). Finally, the
client run-time decrypts the encrypted key using the shared
secret and returns it to the user. Unlike traditional KMSs, only
the client and the HSM can see decrypted data, but not any
intermediary, including the cloud platform.
Other cryptographic operations. PKCS #11 API also
provides other cryptographic operations that are not covered in
this paper. We categorize the types of cryptographic operations
that ScaleTrust can/cannot support in an HSM. ScaleTrust can
support cryptographic operations in the HSM if their input and
output are either public data or key type data. For example,
ScaleTrust can support both sign and verify operations that
use only public data (e.g., certificates) and key type data
(e.g., signing keys). However, ScaleTrust cannot support HSM
operations that do not satisfy the previous condition. For
example, ScaleTrust does not support GenerateRandom in
an HSM because the HSM directly exports its result after
processing. Therefore, a malicious insider can achieve this
random value, which may result in serious security issues if
this random value is used for cryptography. To remedy this,
ScaleTrust delegates such operations to a client instead of using
the HSM even though the HSM may provide better properties
for randomness.

Note that both secure channel establishment (§ VI-B)
and key management operations (§ VI-C) in ScaleTrust are
vendor-neutral, because they only require PKCS #11 APIs
support which is supported by most of commodity HSMs [29],
[54], [83], [91], [99]. Moreover, SoftHSM [66]—a software
implementation of an HSM device—can transparently support
them without modification, as it also provides PKCS #11
interface [67].

D. Verifying vHSM Isolation

In the absence of an insider attacker that has access to HSM,
all HSM access occurs through the commander, which provides
effective isolation across vHSMs. However, in the presence of
a malicious insider, ScaleTrust has to verify that the HSM did

not execute any unauthorized commands that violates vHSM
isolation.
Ensuring log freshness. To ensure the freshness of the log
and thus prevent log replay, the ScaleTrust commander attaches
nonce generated from the client at the beginning and end of
each key management operation listed in § VI-C using the
ExternalLog command. This also helps ScaleTrust to identify
the beginning and end of a log sequence to be verified, as
shown in Figure 4.

At the end of each client operation, the auditor retrieves the
HSM log. Then, it matches the sequence of HSM commands—
PKCS #11 functions and key handle—generated by the com-
mander with the log. If any HSM command not issued by
the commander is detected, the auditor deems the operation
as unauthorized. If the auditor detects any unauthorized HSM
commands, the auditor determines which keys are affected and
reports the keys to the commander to revoke them. The auditor
deems the keys used through unauthorized HSM commands
and keys that are encrypted or decrypted by those as exposed,
thereby revoking those keys.

Finally, HSM vendors differ in the log format. For each
vendor, ScaleTrust requires a match function between the
PKCS#11 commands and their log messages.
Log integrity verification. Finally, we must also verify the
integrity of the HSM log. For this, when a log sequence passes
the inspection, the auditor enclave takes the entire log and
verifies the integrity of the batched log sequence.

Integrity verification requires an external HSM because a
MitM attacker on the same platform can maliciously manipulate
the verification results. However, HSMs do not allow users to
export their log HMAC key in plain-text. Rather, it can only be
shared with HSMs from the same vendor through encryption
with a vendor-specific, non-extractable key. To overcome this
limitation, ScaleTrust provides two options: 1) a public log
verification service provided by the HSM vendor, or 2) another
cloud platform using the same vendor HSMs. Note that some
HSM vendors already provide on-demand HSM services [62],
[82] that can be used as a remote log verification service,
similar to Intel SGX’s remote attestation [44]. The second
option provides correct log verification results unless both
cloud providers collude.

Either way, the auditor sends the log batch and encrypted
log HMAC key to the external service and receives the result
using TLS. If the result indicates that the log integrity was
broken, the enclave cannot determine which in-HSM keys were
abused, so it must revoke all HSM-derived keys.

Note that the log verification in ScaleTrust is also vendor-
neutral, as it is compatible with other vendors’ HSMs with
only minor modifications. The FIPS 140-2 [1] certification of
security level 2 or above mandates that cryptographic modules
support auditing and provide protection against modification
of the audited events. For example, HSMs implemented by
Thales [83] and Yubico [99] provide a chained HMAC [80]
and a chained hash digest [100] for each log line, respectively.
ScaleTrust can easily support HSMs from any vendors by
utilizing their log integrity verification mechanisms in the
auditor’s verification logic.
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Threats on KMS ScaleTrust HSM TEE HSM-TEE

Attacks on Enclaves
Side-channel attacks M N/A ✗ ✗

Attacks on Cloud Instances (e.g., Enclaves) ↔ HSMs
Eavesdropping P ✗ N/A P
Manipulating data messages P ✗ N/A P
Manipulating HSM commands D ✗ N/A ✗

Attacks on Clients
Client master key leakage P P P P

HSM: HSM-backed Cloud KMS, TEE: TEE-only Cloud KMS,
HSM-TEE: HSM-TEE hybrid KMS,

P: Prevention, M: Mitigation, D: Detection.

Table III: Comparison of attacks and defenses.

VII. IMPLEMENTATION AND OPTIMIZATION

We implement 7,148 lines of C++ code for ScaleTrust (4,899
lines for ScaleTrust’s enclave implementation), including the
HSM commander and log auditor logic, a TLS interface for
clients, and SGX ocall wrappers. We use Intel SGX Linux
SDK 2.8 [43] for SGX implementation and port OpenSSL
1.0.2l [68] for use in the SGX enclave. Also, we use the
PKCS #11 API library provided by Thales [85]. Note that
we implement the HSM commander thread to handle its
cryptographic workloads exclusively in the enclave-protected
region, and its TLS connections are terminated in the enclave.
Optimization for master key sign operations. Because a
client master key restore requires heavy computation compared
to a signing operation, restoring the master key for every signing
operation incurs substantial latency. To avoid such overhead,
ScaleTrust erases its plain-text signing key from the HSM only
after performing signing operations up to the pre-determined
threshold and then restores the key when the next signing
request arrives. For example, ScaleTrust can be set to erase
and restore its client master key for every 100 sign operations.
Note that this does not make ScaleTrust vulnerable to insider
threats because ScaleTrust verifies all uses of its signing key
by performing log integrity verification in a batch each time it
erases the key.

VIII. SECURITY ANALYSIS

We describe how ScaleTrust defeats the attacks described in
our threat model § IV. To fully consider the security threats,
we consider all threats in each entity (Clients, Enclaves, and
HSMs) and communication channels between them (Clients
↔ Enclaves and Enclaves ↔ HSMs). Note that ScaleTrust is
secure under attacks against HSMs and the channel between
clients and enclaves because HSMs are trustworthy and reliable
under our assumption, and ScaleTrust uses secure channels for
communicating between clients and enclaves. Therefore, we
discuss the remaining attacks in the following.

Table III compares the security of ScaleTrust with that of
existing cloud KMSs. Existing KMSs can be categorized into
HSM-backed cloud KMS, TEE-only KMS [19], [35], [53], and
a hybrid approach [31] that utilizes a TEE-based KMS as a
proxy of HSMs while allowing to migrate in-HSM keys to the
KMS. These approaches suffer from serious security threats;
HSM-based KMSs have no protection for insider threats, and
TEE-based KMSs cannot mitigate side-channel attacks.
Attacks on Enclaves. ScaleTrust is secure under attacks that
try to achieve client master keys stored in the cloud platform.

No. HSM operation Arguments (Key handles)

1 EXTERNAL LOG Nonce1
2 GENERATE KEY PAIR h CMK private, h CMK public
3 GENERATE KEY h KEK
4 WRAP KEY h KEK ← h SK
5 WRAP KEY h CMK private ← h KEK
6 UNWRAP KEY h SK2 ← h vHSM private
7 WRAP KEY h CMK private ← h SK2
8 CREATE OBJECT -
9 DESTROY OBJECT h CMK private
10 DESTROY OBJECT h KEK
11 EXTERNAL LOG Nonce2

Table IV: Simplified HSM logs when a key abuse occurs
while establishing a client master key pair. Red logs represent
the HSM commands requested by attackers. (The raw version

of the logs is presented in Appendix Figure 12.)

For example, in our case, an attacker may try to leverage side-
channel attacks to achieve the client master keys. However,
ScaleTrust is secure against the attack because it deliberately
stores its client master key only in encrypted forms. Even if
attackers break the confidentiality of ScaleTrust enclaves, they
can expose only the encrypted key. Without knowing the key
encryption key stored in a client, the attacker never learns
any sensitive data. In contrast, both TEE-only and HSM-TEE
hybrid approaches rely on the confidentiality of SGX enclaves,
which makes them vulnerable to side-channel attacks.
Attacks on Enclaves ↔ HSMs. We consider three types
of attacks against the communication channel between the
enclave and HSM: eavesdropping, manipulating data messages
(key objects), and manipulating HSM control messages (HSM
commands).

ScaleTrust is resistant to eavesdropping (i.e., passive attacks)
because ScaleTrust ensures that all keys are encrypted between
the enclave and the HSM. Note that traditional HSM-backed
cloud KMS is vulnerable to a similar type of attack because
attackers residing in cloud instances (VMs) can observe plain-
text keys.

ScaleTrust also protects keys against active attacks that
manipulate data messages, preventing sensitive data leakage.
Except for the shared secret key in § VI-B, ScaleTrust encrypts
all keys using authenticated encryption (AES-KWP [27]) during
transmission. Therefore, if an attacker modifies this encrypted
key, a decryption failure will occur at either the client or the
HSM. ScaleTrust is also resilient to injecting a fake secret key.
Note that attackers can set an arbitrary secret key using the RSA
public key from the HSM. However, this incurs a discrepancy
between keys in the client and ones in the HSM, which results in
a decryption error in subsequent key management procedures.
Note that decryption failures in ScaleTrust, at best, lead to
denial-of-service for key management.

ScaleTrust also limits the impacts of active attacks that
manipulate HSM commands to abuse in-HSM keys in the
following way. ScaleTrust’s HSM has permanent keys and
ephemeral keys. Permanent keys are either protected by HSM
key attributes (e.g., vHSM key) or encrypted (e.g., client master
key) by the key encryption key (§ VI-C). Moreover, ScaleTrust
can detect any abuse on ephemeral keys thanks to its log
verification (§ VI-D). After their use, ephemeral keys are safely
erased from the system.
Attack detection (working example).

Table IV shows a real working example in which ScaleTrust
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detects a key abuse during the establishment of a client
master key pair. Following the procedure described in § VI-C,
ScaleTrust generates a client master key pair (log sequence
number 2), stores the encrypted master private key in the
HSM (8), and then erases the key from the HSM memory (9).
However, in this example, an attacker intentionally imports her
secret key to the HSM (6) before the master private key is
erased from the HSM memory, and then exports the master
private key using the key (7).

Our log verification detects the attack because it confirms
whether the HSM logs match the HSM commands sent by the
HSM commander enclave. Thus, it can detect unauthorized
commands (6-7). Also, the attacker cannot modify the log
messages because ScaleTrust verifies log integrity, as described
in § VI-D. Finally, ScaleTrust revokes the affected keys when
it detects an attack.
Worst-case security impact. Although ScaleTrust always
detects attacks that manipulate HSM commands, it cannot
prevent such attacks. However, ScaleTrust reduces their security
impact compared to existing HSM-based KMSs because only
plain-text client master keys that remain in the HSM memory
at that moment (i.e., in-use keys) can be leaked. The rest
of the client master keys are stored in an encrypted form.
Potential vulnerability of in-use keys is a fundamental problem
of HSMs because they must have plain-text of the keys when
using them, which inevitably leaves a window of vulnerability.
However, compared to HSM-backed cloud KMS or HSM-TEE
hybrid KMS, ScaleTrust improves the security level because
it eventually detects abuse and limits the security impact to
currently restored keys. Note that ScaleTrust revokes all in-use
keys when an attack is detected. We believe that, when clients
adopt perfect forward secrecy, the security impact of its leakage
is significantly reduced.
Attacks on clients. ScaleTrust also protects client master keys
under data leakage in a client system the same as other KMS
systems. ScaleTrust decrypts and uses the encrypted client
master keys only in the HSM and never exports them to clients.
The client master keys can be compromised only if the client
itself is compromised and the attacker obtains the encrypted
keys stored in the HSM.

IX. APPLICATIONS OF SCALETRUST

ScaleTrust can be used as a drop-in replacement for KMS for
all services that require secure key management. We select four
popular cloud services that require key management. Two of
them, Keyless SSL and JSON Web token, originate from a Web
service, and the other two involve data encryption. ScaleTrust
provides PKCS#11 APIs similar to a standard HSM, and
applications that already use the interface can use ScaleTrust
without any code modification.
Keyless SSL. Keyless SSL [63], proposed by CloudFlare,
offloads TLS session key generation to a cloud platform while
keeping a TLS private key in a trusted key server. It splits the
TLS handshake to be performed by two servers: a key server
that signs handshake messages with a TLS private key and a
session server that handles the rest of the handshake (e.g., key
exchange with a client). CloudFlare recommends deploying

key servers in the client’s infrastructure with HSMs [64] to
ensure that the TLS private keys are protected.

As noted before, a client requires deploying the key server
in his local infrastructure because the security of Keyless SSL
only depends on that of the key server. Unfortunately, it is
costly and tricky to maintain such a service locally. ScaleTrust
allows us to securely deploy the key server of Keyless SSL even
in the cloud platform. We can use ScaleTrust as the key server
in the cloud environment because it securely stores TLS private
keys by splitting them into the client and the server. We still
have one restriction though; the client and the server should use
cloud services from different providers since ScaleTrust can
be broken if both entities are compromised. Then, ScaleTrust
can protect TLS keys unless two cloud providers collaborate
for attacks.

Using ScaleTrust, we build an ECDHE-RSA based Keyless
SSL key server. It receives ECDHE parameters from its KMS
clients (e.g., session servers) and signs the parameters using
its TLS private keys.
JSON Web Token (JWT) [47] is a widely used open standard
for securely transmitting information. JWTs are typically signed
using a secret or a public/private pair and are used to transmit
a digitally signed token for Web applications. For example,
Microsoft’s identity platform [59] supports a JWT service that
produces access tokens for client authentication.

We build a JWT authentication service that signs a JWT
using private keys in ScaleTrust. Our prototype JWT service
uses EC (Elliptic Curve) keys with ES256 (ECDSA using
P-256 curve and SHA-256) [22] to generate signatures.
DB key provisioning service [10] is used to generate sym-
metric keys that encrypt data stored in a DB system (e.g., DB
tables or columns). For this, a DB key server utilizes a KMS
to generate a DB encryption key in an HSM and exports the
key. When exporting the newly generated DB key, a KMS
usually sends both keys in plain and encrypted forms. Then,
the DB key server uses the plain-text DB key for encryption.
After the key is used, it removes the key from its memory to
prevent key leakage. If the server wants to restore the same
DB key, it sends the encrypted DB key to the KMS to decrypt
the key. We also implement the DB key provisioning service
using ScaleTrust. Our prototype supports provisioning 256-bits
AES keys as DB encryption keys for its clients.
Key encryption at rest service [10] provides a key encryption
server, which encrypts client-side keys using master keys stored
in HSMs. A client uses this service to protect its keys by
encrypting them while they are not being used. When the
encrypted keys are needed again, the client makes requests to
the server to restore (i.e., decrypt) the keys.

We build a prototype for a key encryption server that takes
256-bit AES keys from a client and encrypts them through
an AES-KWP algorithm. For this, we use a master key in
ScaleTrust, which is also a 256-bit AES key. Similar to the
previous application, ScaleTrust ensures that the cloud provider
never achieves the client’s encryption keys in plain-text.

X. EVALUATION

We evaluate ScaleTrust to answer three questions:
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Figure 5: End-to-end throughput of KMS systems.
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Figure 6: 95th-percentile latency of KMS systems. The
circle mark on each bar denotes the median latency.

Operation
Stand-alone HSM ScaleTrust

# of commands # of commands
G E S O G E S O

Master key signing 0 0 1 0 1* 3* 1 4*
Key provisioning 2 2 0 1 3 3 0 5
Key encryption at rest 1 2 0 0 2 4 0 5

G: Generate key (pair), E: Encrypt, decrypt, wrap, and unwrap, S: Sign,
O: Other HSM commands (e.g., Destroy key),

*: occurs only during master key restore.

Table V: The number of HSM commands required for each
key management operation.

• RQ1: What is the performance overhead of ScaleTrust
compared to a stand-alone HSM? (§ X-A)

• RQ2: Does ScaleTrust enable multi-tenancy? (§ X-B)
• RQ3: What is the performance impact of each ScaleTrust

design component? (§ X-C)
Experiment setup. We evaluate KMS applications on three
machines with Quad-core Intel Xeon E-2288 (3.70 GHz CPU,
8 physical cores) for a KMS server (HSM-equipped server), a
KMS client (application server), and an end client (application
client), respectively. The KMS server is equipped with a Thales
Luna PCIe A700 HSM [85] whose firmware version is 7.4.0
and operates in FIPS-140-2 approved mode, and the KMS
client machine is directly connected between the server and
the end client through a 10 Gbps LAN cable. We set the end
client to run ApacheBench [87] for generating back-to-back
requests to the KMS client, which then sends HSM requests
to the KMS server.

We compare ScaleTrust with two other systems: stand-alone
HSM (baseline), a KMS that uses a stand-alone HSM, and
strawman, which provides the same key management APIs
as ScaleTrust but serially relays HSM commands to serialize
HSM logs, as described in § V.

We use the same PCIe HSM to perform log verification,
instead of using an additional network HSM because we were
not able to equip it in our testbed due to the high price. Instead,
we emulate the network HSM with our PCIe HSM to include
the log verification overhead in our measurement.

A. End-to-end Application Performance

We evaluate the end-to-end performance of each KMS system
using four popular applications presented in § IX: Keyless SSL,
JWT signing service, DB key provisioning, and key encryption

at rest service. We measure throughput, 95th-percentile latency,
and median latency at the end client (ApacheBench).

Figure 5 and Figure 6 respectively show throughput and
latency (95th-percentile and median). For Keyless SSL and the
JWT signing service, ScaleTrust incurs 11.9% and 10.2% of
throughput degradation, and 39.0% and 31.1% of additional
95th-percentile latency, respectively, compared to the stand-
alone HSM. For DB key provisioning and Key encryption at rest
service, the overhead is relatively high; they respectively show
55.1% and 59.7% throughput degradation, and 128.2% and
173.3% additional latency. The reason for the larger overhead is
that ScaleTrust executes more HSM commands to protect keys
that are exposed to the untrusted cloud environment. Table V
compares the type and number of HSM commands required
for each key management operation for stand-alone HSM
and ScaleTrust. Note that some operations (e.g., master key
restore operations) are amortized over multiple sign operations
performed in a batch. During our experiment, ScaleTrust
executes 2.2 times more HSM commands than the baseline to
perform key provisioning, while it requires 1.08 times more
for a signing operation.

Compared to previous KMS studies and an existing cloud
KMS, the performance overhead of ScaleTrust can be regarded
as acceptable in practice. PALÆMON [35] took about 1200ms
of processing time for protecting data and application execution,
which was acceptable for a production application as it is
less than 1500ms. Performance measurement results of SGX
Barbican [19] showed that it took 1859ms for processing each
request. Also, Microsoft Azure’s Key Vault recommends setting
an alert notification when latency exceeds 1000ms [60]. Our
evaluation results show that ScaleTrust achieves end-to-end
latency of less than 200ms which is acceptable for all the above
cases.

The results also indicate that ScaleTrust outperforms straw-
man in all cases; from the leftmost application to the rightmost,
ScaleTrust achieves 6.09x, 3.96x, 1.22x, and 1.18x more
throughput and 0.20x, 0.28x, 0.84x, 0.92x of strawman’s 95th-
percentile latency, respectively. This is because Strawman
cannot fully utilize the HSM through concurrent execution.
ScaleTrust’s relative improvement is higher with applications
that require signing than with applications that mainly use key
generation. This is because the signing is much cheaper than
the key generation. In fact, signing throughput with a 2048-bit
RSA key increases by up to 6.09x, whereas the throughput of
32-bytes AES key generation only increases by up to 1.16x.
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(a) 2048-bit RSA key for Keyless SSL.
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(b) P-256 EC key for JWT signing service.
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(c) 256-bit AES key for Key encryption at
rest service.

Figure 7: Maximum number of client master keys as the number of HSM tenants increases. The number above the marker
represents the maximum number of keys divided by the number of HSM tenants.

Key stored in HSM Key size (B) Metadata size (B) Total size (B)

Plain-text RSA key 1,224 96 1,320
Plain-text EC key 72 136 208
Plain-text AES key 32 88 120

Encrypted RSA key 1,232 116 1,348
Encrypted EC key 80 84 164
Encrypted AES key 40 84 124

Table VI: HSM key storage occupancy for each type of key.

B. Multi-tenant Scalability

Unlike our stand-alone HSM (Thales Luna A700) which
provides only a single partition, ScaleTrust is no longer bound
by the number of physical partitions in supporting multiple
tenants. Instead, multi-tenancy is bound by the total size of
HSM key storage (our HSM device provides about 1.99 MB).
Although cloud-managed HSMs can also support multiple
tenants up to the HSM key storage limit, they do not provide
protection against insider threats, unlike ScaleTrust.

We evaluate the multi-tenant scalability of ScaleTrust by
characterizing the key storage overhead. For comparison,
we compare ScaleTrust with cloud-managed HSM that does
not provide any isolation between tenants in the face of
insider threats. To make the case realistic, we take the same
applications from § IX, which use RSA, EC, and AES keys.

The key space that ScaleTrust occupies differs from that
of the naı̈ve cloud-managed HSM for two main reasons: 1)
ScaleTrust introduces a per-HSM vHSM key and a per-tenant
shared secret key (§ VI-B), and 2) in storing a private key, it
stores an encrypted version instead of the plain-text key, unlike
cloud-managed HSM.

When an HSM stores a key, it occupies the key size and
the metadata size, which vary by key type. Table VI lists the
size of keys used and the metadata they occupy in an HSM
for ScaleTrust and Cloud-managed HSM.

Figure 7 shows the maximum number of client master keys
each system can support as the number of tenants increases.
The numbers above the markers on each curve denote the
maximum number of keys for each HSM tenant. We observe
that the overhead of ScaleTrust is moderate for two reasons: 1)
The per-tenant shared secret key (256-bit AES key) occupies
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Figure 8: Estimated HSM retail cost as the number of HSM
tenants increases. We assume that each tenant uses a 2048-bit

RSA private key within an HSM.

only 120 bytes. Even in the extreme case where each tenant
uses one RSA private key in the HSM, secret keys occupy
only about 8.14% of the HSM key storage. 2) The size of the
encrypted master key is similar to that of plain-text keys. For
applications that use RSA or AES keys with a single tenant,
ScaleTrust respectively supports 2.15% and 3.29% fewer master
keys than the cloud-managed HSMs. This is because when
ScaleTrust encrypts master keys using the AES-KWP algorithm,
the storage footprint of the key increases only by 8 bytes.
Surprisingly, for applications that use EC keys, ScaleTrust
provides more key space when the number of tenants is below
3,670. It turns out that the footprint of the encrypted EC key
is actually smaller than its plain-text version. This is because
plain-text EC keys have larger metadata (e.g., key attributes),
as shown in Table VI.
Cost-effectiveness. Although we cannot make a fair com-
parison of costs between commercial cloud-managed HSMs
and ScaleTrust, we provide an approximate comparison of
costs between ScaleTrust and the legacy stand-alone HSM that
isolates each client through HSM partitions. The legacy HSM
limitation in multi-tenant scalability stems from the limited
memory size of HSMs. Because each HSM partition divides
the total HSM memory, the number of partitions is limited. For
example, the most performant HSM from Thales has limited
memory up to 32MB [84], which supports up to 100 partitions,
with each partition assigned only 0.32MB of memory.

For this reason, a stand-alone HSM, which relies on HSM
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partitions to provide isolation, requires significant capital
investment to be scaled out for multi-tenancy. Note that HTTPS-
based hosting service providers often manage tens of thousands
of private keys for multiple clients [18]. With stand-alone
HSMs, a service provider should deploy a new HSM for every
100 clients to isolate each client’s private keys through HSM
partitions. In contrast, ScaleTrust provides isolation that is not
limited to the number of HSM partitions, and it can handle
24.9 K RSA private keys using a single HSM.

Figure 8 shows the comparison of estimated HSM cost
between ScaleTrust and the stand-alone HSM as the number
of HSM tenants increases to 100 K. We estimate the cost with
the HSM which provides 100 partitions [84] and is priced at
36 K USD in retail cost [74]. The estimated result shows that
the stand-alone HSM requires 1 K HSMs (36 M USD in retail
cost) while ScaleTrust requires only 5 HSMs (0.18 M USD in
retail cost) to support 100 K tenants.

C. Performance Breakdown

Benefit of concurrent execution. ScaleTrust leverages HSM’s
internal concurrency to achieve high throughput. To characterize
this, we measure the throughput and latency (median and 95th-
percentile) of each KMS system by increasing the number of
end clients (i.e., HSM tenants) that concurrently make requests
to the KMS. We take the Keyless SSL as a representative
application because it is one of the most popular HSM use
cases [2]. We vary the number of concurrent KMS requests
from 1 to 32, as we observe that the HSM performance is
saturated around the concurrency of 16.

Figure 9 and Figure 10 respectively show the throughput
and latency when the number of concurrent requests is
increased. Similar to the stand-alone HSM, ScaleTrust scales its
throughput as the number of concurrent KMS requests increases
from 1 to 16 (HSM saturated); the stand-alone HSM (baseline)
and ScaleTrust throughput increase by up to 8.08x and 7.95x,
respectively. ScaleTrust incurs throughput degradation up to
17.0% and increases the latency up to 39.0% against the stand-
alone KMS. In contrast, strawman only scales its throughput
by up to 1.29x and its latency increased almost proportionally
to the number of concurrent requests because of its serialized
execution.
Effect of concurrency and multi-threading. ScaleTrust
utilizes multi-threading to take advantage of the HSM’s

concurrent execution. To demonstrate this, we instrument
ScaleTrust and Strawman to provide timestamps for each
operation during RSA signing with client master keys, and
then we measure the processing time of each system when
it receives two simultaneous signing requests. Figure 11
shows the measurement results. The result shows that the
concurrent execution of commanders benefits from smaller tail
latency. Compared to the strawman, which takes 19.95 ms to
finish processing the two signing workloads, ScaleTrust takes
12.01 ms which is 60.12% of strawman’s total processing time.
We also note that the overhead of processing each log message
is small enough to be handled by a single auditor thread,
because parsing each log sequence takes only about 0.03 ms on
average. The commander threads do not stall waiting to receive
parsed log information from the auditor due to multi-threading.

XI. DISCUSSION

We discuss how ScaleTrust can be FIPS compliant and which
security properties ScaleTrust supports against TLS key leaks.
Complying with the FIPS 140-2 requirements. The actual
FIPS certification requires accredited third-party testing [1].
However, we note that the ScaleTrust approach complies
with the FIPS 140-2. ScaleTrust satisfies the FIPS 140-
2 requirements [86], which are that 1) the system should
only use FIPS-approved hardware and software and 2) mas-
ter keys can only enter or leave the system in an en-
crypted form. In particular, ScaleTrust utilizes FIPS-validated
HSMs that support physical security (e.g., tamper resis-
tance) similar to the traditional HSM-backed cloud KMS [8],
which already achieved FIPS 140-2 certification [9]. Also,
ScaleTrust runs its HSMs in the FIPS-approved mode, which
restricts the HSMs to use FIPS-approved cryptographic al-
gorithms. For example, ScaleTrust uses the FIPS-approved
CKM_RSA_FIPS_186_3_PRIME_KEY_PAIR_GEN function to
generate its vHSM key (§ VI-B). Finally, ScaleTrust does
not allow its plain-text client master keys to leave the HSM.

In addition, we believe that ScaleTrust can be applied to
other types of third-party hardware devices other than HSMs if
they support FIPS 140-2 compliant security properties such as
secure cryptographic operations and event logging. Leveraging
the security properties, ScaleTrust can enable isolated use of
the hardware devices in an untrusted third-party environment.
Supporting security properties against TLS key leakage.
To leak cryptographic keys stored in ScaleTrust’s HSMs (e.g.,
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Compatible HSM Approach to key protection

ScaleTrust FIPS-compliant legacy Isolate key usages in HSMs
SafetyPin All legacy Split keys over multiple HSMs
Fortanix SGX-based HSM Use security features of SGX
Myst New HSM architecture Enhance physical security

Table VII: Comparison of ScaleTrust with other HSM studies.

client master keys), the attacker must issue commands to the
HSMs. However, since every HSM execution must leave an
HSM log, such attacks are detectable through log verification
(§ VI-D). If enclave’s log verification result is forged due to
the long-term TLS key leakage, it can be detected at the client
by processing raw HSM logs periodically or confirming the
genuine result directly from the public log verification service
on which ScaleTrust depends. Note that the integrity of HSM
logs is preserved by the chain of HMAC digests from HSMs
regardless of TLS keys.

XII. RELATED WORK

Our prior workshop publication [39] explores collaboration
of HSMs and TEE-based KMSs, which reduces the burden
of the HSMs by offloading frequent user-requested crypto
operations to the KMS enclaves. In this extended version, we
focus on a new problem, which is how we can scale multi-
tenancy using HSM devices, with a completely new design
that performs all crypto operations inside HSMs.
Hardware security module. SafetyPin [23] protects a key used
for encrypting mobile backup data by splitting the key over
multiple HSMs. Similar to ScaleTrust, it assumes malicious
cloud providers can access the HSMs in a cloud platform.
However, this study mitigates insider attacks by utilizing
multiple HSMs to increase the attack cost, whereas ScaleTrust
avoids insider threats by ensuring the isolation of key usages in
HSMs through encryption. Fortanix’s SGX-based HSMs [32]
use Intel CPUs on HSMs to provide better scalability than
legacy HSMs, and Myst [55] proposes a new architecture of
cryptographic hardware that prevents some physical attacks
such as hardware trojans. ScaleTrust, however, achieves the
multi-tenant scalability using FIPS-compliant legacy HSMs that
are already deployed or that are from preferred vendors by cloud
providers [7], [42]. ScaleTrust also aims to be HSM vendor-
neutral. Table VII summarizes the comparison of ScaleTrust
with other HSM-related studies.
Attacks against SGX. Many research efforts study the security
of SGX. For example, SGX has been attacked from various
side-channel attacks by abusing the page fault [97], cache [34],
branch target buffer (BTB) [51], and other micro-architectural
vulnerabilities [73], [92], [93], [95]. Motivated by the side-
channel attacks that reveal enclave content, ScaleTrust employs
a design that does not rely on the confidentiality of enclaves.
Unlike other generic yet expensive side-channel defenses using
ORAM [37] or T-SGX [76], ScaleTrust employs dedicated
design for the cloud KMS, incurring only modest performance
overhead. Although, some attacks focus on undermining the
integrity of SGX enclaves, our threat model considers them out
of scope. For example, Lee et al. [50] and Biondo [17] have
studied classical yet powerful memory corruption exploits,

while SGX-Bomb [45] breaks SGX’s integrity using the
Rowhammer attack.
SGX applications. SGX has been widely used to pro-
tect security-sensitive applications. Haven [13], Graphene-
SGX [88], SCONE [12], and Panoply [77] propose frameworks
to support an unmodified application in SGX. VC3 [72],
M2R [25], AirBox [16], and Ryoan [40] offload data processing
to the cloud while ensuring user privacy. S-NFV [75] secures
NFV states, and SGX-Tor [48] mitigates potential attacks on Tor
network. SGX-Box [38], LightBox [26], and Safebricks [70]
enable a secure middlebox on encrypted traffic. Civet [89]
securely partitions Java applications within an enclave. OBLIVI-
ATE [4], OBFUSCURO [3], ZeroTrace [71], Opaque [101], and
OCQ [24] utilize SGX and accomplish performant oblivious
execution to even hide the memory access patterns of a program.
Unlike most prior work, we do not rely on the confidentiality
of enclaves but address the problem of providing isolation of
virtual HSMs.

XIII. CONCLUSION

ScaleTrust enables multi-tenant isolation of legacy HSMs
within a cloud in the presence of a malicious insider. ScaleTrust
supports most PKCS #11 operations for its users while defend-
ing against insider threats by translating the user’s cryptographic
requests into a series of HSM commands. This allows us to
build virtual HSM partitions that support multiple tenants while
providing isolation across tenants in a secure fashion. Our
evaluation shows that ScaleTrust is a practical system that
supports various real-world applications and achieves multi-
tenancy scalability for key management; its performance is
similar to that of a stand-alone HSM.

APPENDIX

Figure 12 shows the raw HSM logs of Table IV described
in our security analysis (§ VIII). Each log contains a sequence
number, a timestamp, a log message—an HSM operation and
arguments (e.g., key handles)—, an HMAC, and an ASCII-HEX
data record.
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25102809,21/06/02 13:14:28,S/N 1431379664541 session 1868 Access 18084:0 operation 
LUNA_WRAP_KEY returned RC_OK(0x00000000) (raw/wrapping key handles=151197/151215),[HMAC],[Raw data record]

25102810,21/06/02 13:14:28,S/N 1431379664541 session 1868 Access 18084:0 operation 
LUNA_WRAP_KEY returned RC_OK(0x00000000) (raw/wrapping key handles=151205/151197),[HMAC],[Raw data record]

25102811,21/06/02 13:14:28,S/N 1431379664541 session 1868 Access 18084:0 operation 
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25102812,21/06/02 13:14:28,S/N 1431379664541 session 1868 Access 18084:0 operation 
LUNA_WRAP_KEY returned RC_OK(0x00000000) (raw/wrapping key handles=151205/151190),[HMAC],[Raw data record]

25102813,21/06/02 13:14:28,S/N 1431379664541 session 1868 Access 18084:0 operation 
LUNA_CREATE_OBJECT returned RC_OK(0x00000000),[HMAC],[Raw data record]

25102814,21/06/02 13:14:28,S/N 1431379664541 session 1868 Access 18084:0 operation 
LUNA_DESTROY_OBJECT returned RC_OK(0x00000000) (object handle=151205),[HMAC],[Raw data record]

25102815,21/06/02 13:14:28,S/N 1431379664541 session 1868 Access 18084:0 operation 
LUNA_DESTROY_OBJECT returned RC_OK(0x00000000) (object handle=151197),[HMAC],[Raw data record]

25102816,21/06/02 13:14:28,session 1868 Access 18084:0 
external message follows: E409B3D20BF382576C41260754DC57C223B315189619C5D6EE37415559EA919A,[HMAC],[Raw data record]

*HSM log format: [Sequence number][Timestamp][Log message][HMAC][ASCII‐HEX data record]

Figure 12: Raw HSM logs shown in Table IV. We omit an HMAC and an ASCII-HEX data record from each log for simplicity.
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