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ABSTRACT
Algorithmic discrimination is one of the significant concerns in

applying machine learning models to a real-world system. Many

researchers have focused on developing fair machine learning algo-

rithms without discrimination based on legally protected attributes.

However, the existing research has barely explored various security

issues that can occur while evaluating model fairness and verifying

fair models. In this study, we propose a fairness audit framework

that assesses the fairness of ML algorithms while addressing po-

tential security issues such as data privacy, model secrecy, and

trustworthiness. To this end, our proposed framework utilizes con-

fidential computing and builds a chain of trust through enclave

attestation primitives combined with public scrutiny and state-of-

the-art software-based security techniques, enabling fair MLmodels

to be securely certified and clients to verify a certified one. Our

micro-benchmarks on various ML models and real-world datasets

show the feasibility of the fairness certification implemented with

Intel SGX in practice. In addition, we analyze the impact of data

poisoning, which is an additional threat during data collection for

fairness auditing. Based on the analysis, we illustrate the theoretical

curves of fairness gap and minimal group size and the empirical

results of fairness certification on poisoned datasets.

CCS CONCEPTS
• Security and privacy→Privacy-preserving protocols; •Com-
puting methodologies→ Supervised learning.
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1 INTRODUCTION
Nowadays, Machine Learning (ML) models developed with a large

amount of data can address various real-world problems such as im-

age classification, text classification, health monitoring, and churn

prediction from Web logs [2, 42, 43]. However, ML researchers and

practitioners have raised concerns about bias and discrimination

in ML-based automated decision-making, where unfairness can

come from various sources ranging from inherent bias in training

data to amplified bias during training procedures. In EU General

Data Protection Regulation (GDPR), Recital 71 refers in particular

to fairness-aware processing and data mining technologies [60]. In

the ML context, many fair learning methods have been focused on

algorithmically mitigating biases while attaining efficient trade-offs

between model accuracy and fairness.

Algorithmic fairness is mainly related to legally protected char-

acteristics such as disability, race, and gender, which are sensitive

information that can potentially disclose and breach individual

privacy [5, 36]. Thus, organizations or corporations implement-

ing algorithmic decision-making systems (i.e., modelers) can not

use the protected characteristics to train ML models. Fair learning

approaches [36, 41] have been proposed to work with such a restric-

tion, i.e., training fair models without the protected characteristics.

However, it is still required to have the protected characteristics

for assessing the fairness of the trained model.

To resolve the lack of available sensitive information during

fairness audit on ML software, Veale and Binns [60] postulate that

a third party (i.e., regulator) possesses test data with the protected

characteristics for the fairness evaluation. In this approach, there

should be a strong trust relationship between the regulator and

the modeler: the regulator has to trust the ML prediction results

from the modeler, or the modeler should allow access to its al-

gorithm and code if the regulator performs a direct audit on the

algorithm. The problem is that full access to ML models can invade

the modeler’s intellectual property. Therefore, companies might

have their own internal auditing teams or turn to the private au-

diting firm [45]. Several studies [31, 36] proposed a public fairness

audit utilizing multi-party computation (MPC) to protect model

confidentiality and data privacy. Although those approaches en-

able a public fairness audit under the assumption of semi-honest

security, they require significant computational overhead.

In this study, we propose a public fair audit framework that as-

sesses the fairness of ML models and attests to the fairness-aware

ML models. Our framework provides a technical solution to enable

secure fairness audit by leveraging confidential computing based

on hardware enclave. We address critical design challenges in fa-

cilitating fair ML audit under a practical threat model. Our key

contributions are as follows:

https://doi.org/10.1145/3485447.3512244
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• We provide a generic fairness audit framework that is not de-

pendent on any particular application or concept of fairness

so that the framework can be applied to various algorithmic

fairness problems.

• We explore potential threats or attacks in the fairness certifi-

cation/verification process from the perspective of all partic-

ipants, considering various adversaries such as a malicious

modeler, a curious or disguised regulator or data owner, or

an outside invader, described in §3.2.

• We design our framework to address these security issues

by leveraging hardware enclaves in confidential computing,

enhancing security mechanisms based on enclave remote

attestation, and constructing the chain of trust from certifi-

cation to verification through public scrutiny and enclave

sandboxing, explained in §4.

• We show that our framework yields a small computational

overhead in real-world datasets through experiments using

an SGX-based implementation of fairness certification.

The remainder of this paper is organized as follows. §2 provides

background on fairness notions in ML and confidential comput-

ing. §3 brings up possible threats in realizing a secure fairness

audit framework from the perspective of all participants while

§4 describes our fairness audit framework based on confidential

computing to address the potential threats. We demonstrated the

effectiveness of the fairness certification on real-world datasets in

§5. §6 and §7 discusses related work and concludes this study.

2 BACKGROUND
2.1 Fairness notions in ML
Various fairness notions have been proposed in the previous stud-

ies, such as statistical disparity, equalized odds, and individual fair-

ness [25, 63]. In this study, we propose a fairness audit framework

that can be applied to statistical fairness notions that require sensi-

tive group information because the main privacy challenge of fair-

ness auditing comes from restrictions on the collection of sensitive

variables. The popular statistical fairness notions include disparate

treatment, disparate impact, disparate mistreatment, and equalized

odds. Disparate treatment means that the decision-making system

gives different outputs even if non-sensitive attributes have the

same or similar values, but sensitive attribute values are differ-

ent. On the other hand, disparate impact exists when the decision-

making system provides predictions based on implicit correlations

between the outputs and sensitive attributes. Disparate mistreat-

ment considers that misclassification rates are different depending

on sensitive attributes. Equalized odds imply that the instances

from different sensitive groups have the same or similar predictions

if they come from the same label group.

Suppose that we have a binary classifier 𝑓 (𝒙), non-sensitive
attributes 𝒙 ∈ R𝑝 , sensitive attribute 𝑧 ∈ Z, class label 𝑦 ∈ {−1, 1}
and the estimated output 𝑦 = sign(𝑓 (𝒙)). Then, the above notions
can be represented as:

• Disparate treatment:𝑃 (𝑦 |𝒙, 𝑧) ≠ 𝑃 (𝑦 |𝒙),∀𝑧
• Disparate impact (DI):𝑃 (𝑦 = 1|𝑧) ≠ 𝑃 (𝑦 = 1),∀𝑧
• Disparate mistreatment

– Overall misclassification rate (OMR): 𝑃 (𝑦 ≠ 𝑦 |𝑧) ≠ 𝑃 (𝑦 ≠

𝑦),∀𝑧

– False positive rate (FPR): 𝑃 (𝑦 ≠ 𝑦 |𝑦 = −1, 𝑧) ≠ 𝑃 (𝑦 ≠

𝑦 |𝑦 = −1),∀𝑧
– False negative rate (FNR): 𝑃 (𝑦 ≠ 𝑦 |𝑦 = 1, 𝑧) ≠ 𝑃 (𝑦 ≠ 𝑦 |𝑦 =

1),∀𝑧
• Equalized odds: 𝑃 (𝑦 = 1|𝑦, 𝑧) = 𝑃 (𝑦 = 1|𝑦),∀𝑦, 𝑧

In this study, we implement all of the above notions for fairness

auditing. In a regression problem, for a predictor 𝑔(𝑥) : R𝑝 → R𝑞 ,
the following notions are relevant Agarwal et al. [3]:

• Statistical parity: 𝑃 (𝑔(𝑥) ≥ 𝑎 |𝑧) ≠ 𝑃 (𝑔(𝑥) ≥ 𝑎),∀𝑧, 𝑎
• Bounded group loss: E[ℓ (𝑦,𝑔(𝑥)) |𝑧] ≤ Z ,∀𝑧

It is difficult to obligate ML providers to meet the fairness notions

through laws and regulations across the use cases because the

fairness notions associated with ML models are highly dependent

on the application domains. Therefore, we propose a certification-

based framework that encourages ML providers to construct fair

models that are attractive to their clients.

2.2 Confidential Computing
Confidential computing is a new paradigm in cloud computing to

keep privacy-sensitive data more safe and secure [1]. By leveraging

commoditized trusted execution environment (TEE) technology

provided by CPU vendors [8, 26], it enables service providers to

achieve isolated execution of their services within a hardware-

protected memory region—an enclave. With a processor-specific

key, the CPU package cryptographically protects an execution of

enclave code from underlying software components running in

the host system, including OS and hypervisor. This introduces a

new opportunity to service providers who are reluctant to migrate

privacy-sensitive services to the untrusted cloud [10]. In fact, the

execution model of confidential computing perfectly fits well with

privacy-preserving ML services running on the public cloud infras-

tructure; researchers have proposed TEE-based ML/DL prediction

and training systems [21, 27, 32, 39, 46, 58, 66].

Recent hardware-based TEEs support enclave attestation that

enables proving the integrity and genuinity of enclaves running

on the remote platform (e.g., cloud) [4]. For example, in the case

of Intel SGX, a verifier can validate a report created by a target

enclave by asking Intel Attestation Service (IAS) that the report

is signed with a valid attestation key. Then, the verifier can figure

out whether the enclave is loaded on the real SGX hardware or not

(e.g., emulation). In addition, the attestation procedure contains

cryptographic verification on the enclave’s hash measurement to

check its integrity. Note that it is possible to establish a secure

channel by combining TLS handshake[23, 55] or Diffie-Hellman

key exchange (DHKE) [4] with enclave attestation.

3 PROBLEM STATEMENT
In this paper, we aim to develop a framework for auditing the

fairness of an ML model and certifying/verifying a fair model to

enable clients to use a certified ML model for inferences while

preserving data privacy and model confidentiality.

3.1 Deployment Scenario
We consider a scenario in which four participants work on cer-

tification, verification, and use of an ML model: 1) multiple data
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owners who provide data for model fairness test, 2) a regulator that

performs fairness audits on an ML model, 3) a modeler (ML service

provider) that trains a model and provides its inference API, and 4)

clients who request ML inferences to the modeler.

In this scenario, the modeler wants to demonstrate the fairness

of their ML model and obtain a certificate of fairness. Then, the

regulator tests and certifies/verifies an ML model from the modeler

so that clients can safely use the modeler’s fair model for inferences.

The regulator’s model fairness test is based on data given from

multiple data owners. To ensure no interest between a regulator

and ML modeler, we assume that the regulator is not involved in a

model training. As a result, we can summarize the requirements

and capabilities of each participant as follows:

• Modeler provides inferences API based on its trained ML

model to a regulator and clients without exposing the secrets

of the model, such as code, weights, and parameters.

• Regulator needs validation datasets that contain sensitive

information. Given a dataset, a regulator can compute fair-

ness metrics like those described in §2.1 to evaluate the

fairness of ML models. Based on the values of the obtained

metrics, it determines whether a model is fair according to

its own policy and issues the certificate of fairness.

• Data owners (Owners) provide datasets that a regulator
leverages to evaluating the fairness of ML models. Through-

out the entire certification procedure, including data transfer

and fairness evaluation, they want to protect the privacy

of the entire data as well as sensitive information to stake-

holders (e.g., face, textual, and speech data), such as other

participants and a regulator.

• Clients want to use a trustworthy ML inference API that

guarantees fairness while preserving the privacy of their

request data.

3.2 Potential Threats and Challenges
Given the requirements and capabilities in §3.1, we consider poten-

tial threats and attacks from the perspective of each participant. We

assume that the attacker could be a malicious modeler, a curious

or disguised regulator or data owner, a cloud service provider (if

required), or an outside invader.

Modeler-side (T1) When a public regulator verifies the modeler’s

ML API, there exists a risk that a mistrustful regulator asks the

details about its ML model. If a malicious attacker imposters such

a regulator, the attacker can exploit the information to extract the

modeler’s secrets. To avoid the threat, the corporations entrust the

fairness evaluation of their ML software to private auditing firms

that might similarly request access to the codes of their ML software

but are trusted. However, the clients (ML API users) might doubt

the authenticity of the verification results by private auditors.

Regulator-side (T2,T3)Amalicious modeler might ask a regulator

to certify an unfair model as a fair one. To this end, the modeler

submits a fair model, which is not an exact one to be evaluated,

during the regulator’s test, and then deploys the unfair model after

obtaining certification (T2). Also, a regulator worries about the

reliability of the collected data from multiple data owners (e.g., data

poisoning on sensitive group information) (T3).

Data-owners-side (T4) Data owners can lose data privacy and

confidentiality by the impersonate attack that disguises a regulator

or eavesdropping on the communication between data owners and

a regulator. Although prior studies proposed a cryptographically

protected fair certification/verification framework using MPC [31,

54], they had high communication costs between two parties and

protected only sensitive group information (i.e., demographics)

because of computational complexity.

Clients-side (T5,T6) The ML service users can be deceived by

certification forgery (T5). For example, a malicious modeler might

manipulate the certificate of ML fairness for itself without going

through the regulator or provide an unfair ML API only at runtime.

Moreover, clients worry that their data will be stolen by modelers

or other outside attackers in unintended ways while requesting the

inference results to the ML API (T6).
Several fair ML studies have been interested in some threats

above [31, 41, 54, 60] and fairness evaluation or audit [11, 12, 30, 52,

53]. However, we have found that existing workflows of fairness

assessment do not lend themselves to address the threats (T1-T6).
We aim to propose a secure fairness audit framework to deal with

the aforementioned security issues. The following section will de-

scribe the system components that constitute our framework and

how each component can be helpful to mitigate T1-T6.

The considered scope of threat model. Although we explore

various potential threats in the fairness audit process in this study,

we do not consider how to build fair MLmodels or how to cope with

possible attacks in the inference phase, such as model extraction,

inversion, and evasion attacks. [19, 20, 38, 57, 59]. In our system

architecture, we assume that an enclave and the CPU package

are the only trustworthy components; thus, as in the traditional

threat model using hardware enclaves [10, 26], it is possible that an

attacker controls the entire software stack, including the operating

system and hypervisor. Also, we consider the case where only CPU

processes workloads for fairness certification to securely protect

Fair ML models and their prediction routines within an enclave; we

do not deal with untrusted computing units such as GPU. Note that

we do not consider side-channel attacks on TEE because enclave

hardening is beyond the scope of this study.

4 PROPOSED FRAMEWORK
In this section, we present our fairness audit framework that aims

to counter the threats (T1-T6) presented in §3.2 by leveraging

hardware enclaves in confidential computing. Regulator, Modeler,
Owners and Clients denote regulator, modeler, data owners and

clients in §3.1, respectively.

4.1 System Overview
Our fairness audit framework consists of sub-modules for the partic-

ipants (Regulator, Modeler, Owners and Clients) described in §3.1.

While most fairness audit processes concentrate on the evaluation

of ML fairness, our framework excogitates a secure fair ML audit,

from assessing the fairness of ML APIs (certification) to ensuring

the use of certified fair ML APIs (verification).

Figure 1 illustrates the overview of the interaction between the

modules in the certification phase in our proposed framework. Reg-
ulator consists of fairness auditing and data aggregation enclaves:
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Figure 1:Model certification overview. Note that "RA" denotes
remote attestation and "ML" denotes machine learning.

1) The fairness auditing enclave certifies and verifies an ML API

trained by Modeler. Modeler requests its model certification to the

fairness auditing enclave. The fairness auditing enclave checks the

fairness of the model based on inference results on test data, and it

issues a certificate if the model is fair. 2) The data aggregation en-

clave manages and collects the fairness test data sent from Owners.
We explain the detailed design of certification phase in §4.2 and

discuss potential issues in the the data aggregation enclave in §4.4.

After Regulator successfully certifies the fair ML APIs, our frame-

work performs the verification phase related to running the ML

inference API in practice (See Figure 2). If Clients query whether a

model is fair toModeler,Modeler’s inference enclave replies with
the certificate issued by the fairness auditing enclave in Regulator.
Then, Clients validate the model’s fairness through the certificate

so that it obtains trustworthy inferences from the certified API. We

will describe the sub-process for the verification phase in §4.3.

Under our system design, an adversary aims to break the model

secrecy (T1), disturb the calculation of fairness notions (T2, T3),
uncover sensitive variables during fairness certification by eaves-

dropping on user input (T4), vitiate fairness certificates (T5), or
swindle a client’s data during inference phase (T6). We propose

design components (D1-D5) and elaborate them to mitigate the

aforementioned potential threats with a theoretical analysis (A1).

4.2 Fair Model Certification
In the proposed framework, the fairness auditing and data aggrega-

tion enclaves take charge of fair model certification. In the certifica-

tion phase, we need to consider modeler-side (T1), regulator-side
(T2,T3) and data-owners-side (T4) threats. To cope with these

threats, we introduce D1-D2 based on confidential computing with

executing multiple enclaves in a public cloud infrastructure.

D1. Secure transmission of sensitive information (T4) Our
fairness audit begins with a data aggregation enclave collecting test

data from Owners. The communication between data aggregation

and owner enclaves is encrypted to prevent data disclosure during

the collection process: encrypted data are sent by Owners and de-

crypted in a hardware enclave by establishing a secure channel. Ex-

tending enclave attestation to utilize cryptographic protocols (e.g.,

TLS or DHKE) can prevent attackers from impersonating Regulator
or eavesdropping Owners’ data. Note that our privacy protection is

not necessarily limited to the sensitive group information 𝑧 unlike

[31, 54]. Also, Clients’ data can be similarly protected in verifica-

tion. Regulator-side threat (T3) on the aggregation enclave will be

explored in the analysis A1 in §4.4.

D2. Enclave remote attestation of fairness auditing enclave
and ML inference enclave (T1, T2) To request a model certifica-

tion, Modeler first initiates enclave attestation procedure with the

fairness auditing enclave to confirm its model to be certified. Once

the attestation completes, the fairness auditing enclave collects

the inference results for the fairness test data using the inference

API provided byModeler. The remote attestation verifies the con-

fidentiality of the enclave publisher to prevent an adversary from

impersonating participants and verifies the integrity of codes and

data to ensure that a malicious modeler cannot compromise the

integrity of the inference enclave. In our proposed framework, both

Modeler and Regulator mutually perform enclave attestation to

authenticate each others’ identities, for example, to figure out the

disguised regulator. Note that Modeler only exposes the crypto-

graphic hash of the inference enclave and the inference results of

the ML model. Therefore, Modeler can protect model confidential-

ity while requesting the certification procedure, i.e., it does not

disclose the code and parameters of the model to any participant.

However, it is still difficult for Clients to be aware of whether the

attested enclaves only behave in determined ways. Thus, we will

propose D5 to address this issue in §4.3.

Computation of ML model fairness for certification. Us-
ing the collected inference results on the test data, the fairness

auditing enclave computes the fairness metrics and determines

whether the model is fair. Thus, we want to describe the formu-

lation of ML fairness for certification. Suppose that R𝑧 (𝑓 ) rep-
resents metrics of a group 𝑧 for fairness of function 𝑓 such as

misclassification, false positive rate, and false negative rate. With-

out loss of generality, we can consider the misclassification rate

(risk) R𝑧 (𝑓 ) = E𝑥,𝑦,𝑧′ [I[𝑓 (𝑥) ≠ 𝑦 |𝑧′ = 𝑧]], where I is an indica-

tor function. Our framework estimates this group risk with the

collected data D = {(𝑥1, 𝑦1, 𝑧1), . . . , (𝑥𝑁 , 𝑦𝑁 , 𝑧𝑁 )} =
⋃

𝑧′∈Z D𝑧′

where D𝑧′ = {(𝑥,𝑦, 𝑧) ∈ D : 𝑧 = 𝑧′}. The estimated group

risk is denoted by 𝑅(D𝑧) = 1

𝑚𝑧

∑
𝑖∈D𝑧

I[𝑓 (𝑥𝑖 ) ≠ 𝑦𝑖 , 𝑧𝑖 = 𝑧],
where |D𝑧 | = 𝑚𝑧 . We can define the fairness gap of a classifier

𝑓 max𝑧0,𝑧1∈Z |R𝑧0 (𝑓 ) − R𝑧1 (𝑓 ) | as in [54]. Based on this, we can

define the classifier 𝑓 is (𝜖, 𝛿)-fair if:

𝑃𝑟

[
max

𝑧0,𝑧1∈Z
|R𝑧0 (𝑓 ) − R𝑧1 (𝑓 ) | > 𝜖

]
≤ 𝛿. (1)

We can also compute the empirical fairness gap from the given

dataset as follows:

𝐺 (𝑅,D) = max

𝑧0,𝑧1∈Z
|𝑅(𝑓 ,D𝑧0 ) − 𝑅(𝑓 ,D𝑧1 ) | (2)

For simplicity, 𝐺 (D) denote 𝐺 (𝑅,D). In the fairness certification

phase, we can ensure the fairness of ML model by using the empiri-

cal fairness gap (2) as described in the claim of [54]. This empirical
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gap can be computed for other fairness notions in §2.1. Note that

the code for calculating fairness metrics can be shared and agreed

upon in public because the code itself does not reveal any confi-

dential information such as data or models. Based on the results of

this certification, the fairness auditing enclave issues a certificate

of fairness to the target ML inference API. In §4.3, we present how

Clients use the ML inference API signed by Regulator.
Themost appropriate fairness notion differs according to the real-

world problem for which ML models are applied. Our framework

adaptively supports other fairness notions since the fairness audit-

ing enclaves can compute them without complex design changes in

fairness check algorithms, different from other MPC-based privacy-

preserving certification studies [31, 54].

4.3 Fair Model Verification
To guarantee the end-to-end trustworthiness from Regulator to
Clients, there needs to be a client-side verification mechanism

against other participating enclaves regarding a certified model to

which Regulator issues a certificate. In our framework, Clients ver-
ify the integrity of Modeler’s inference and Regulator’s fairness au-
diting enclaves through the enclave attestation primitives. However,

the following issues still need to be addressed: 1) Clients cannot rec-
ognize whether a target enclave to be attested is genuine unless the

code of enclave is publicly available and well scrutinized [27, 65]. 2)

there is no safeguard for clients to detect misbehavior of Modeler
and Regulator; for example, a malicious modeler deploys an unfair

model, and a malicious regulator issues a forged certificate. Our

framework addresses these issues by introducing D3-D5.

D3. Public scrutiny of fairness auditing enclave (T5) Public
scrutiny of the fairness auditing enclave helps Clients to validate

the integrity of their target regulator’s enclave: they combine the

openness with the attestation in D2 to validate the authenticity

of fairness audit conducted by Regulator. If Regulator attempts

an unauthorized change on the fairness audit procedure, Clients
promptly recognize the integrity of the certification becomes bro-

ken by comparing it with the public scrutinized code. Note that

the fairness certificates are implemented based on the standard

cryptographic libraries (e.g., OpenSSL), so enabling public scrutiny

does not reveal any Regulator’s intellectual property or secret.

However, public scrutiny is infeasible in the case of the verifi-

cation of Modeler’s inference enclave due to privacy concerns. As

stated in the threat T1 of §3.2,Modeler does not want to expose a

trained model (e.g., model parameters and the corresponding train-

ing algorithm) since the loss of confidentiality of the proprietary

model leads to irreparable damage to the disclosing party’s business

or an unintended exposure of their vulnerability. Also, enclave at-

testation cannot verify the deployed certificate residing onModeler
because the procedure does the integrity of the initial code and

data of the target enclave, not runtime data retrieved from exter-

nal entities (e.g., certificates issued from fairness auditing enclave).

Therefore, an additional approach is required to enable Clients to
audit the issued certificate while preserving the model confidential-

ity. The model verification procedure has to address two security

concerns as discussed in §3.2: 1) How to verify the issued certificate

to the ML inference enclave (T5). 2) How to verify whetherModeler

Figure 2: Model verification overview.

utilizes the certified model in actual service without disclosing the

model confidentiality and Clients’ data (T1,T2,T6).
D4. Verifying fairness certificate manifest (T5) After Regulator
populates the certificate to Modeler’s inference enclave, Clients
verify whether the inference enclave passes the fairness test and

Regulator has indeed utilized it for the certification. However, the

issued certificate is dynamically loaded (or received from the net-

work) after bootstrapping an enclave, which means that its integrity

cannot be checked through remote attestation. To address this, we

take a similar approach that measures the integrity of dynamically-

linked libraries by pre-registering the specification manifest within

an enclave [14]. Our verification procedure imposes an inference

enclave to include a hard-coded credential as a manifest (e.g., self-

signed certificate by Regulator) before registering the cryptographic
hash of an inference enclave for remote attestation.

Figure 2 illustrates the overall procedure. First, Clients initiate
remote attestation, and if it succeeds, Clients retrieve the mani-

fest with the fairness certificate fromModeler. Then, Clients ask
Regulator to verify the signed certificate extracted from the mani-

fest, which should be statically registered within the Regulator’s
inference enclave after the model certification. To distinguish man-

ifest, the fairness auditing enclave manages aModeler-certificate
mapping table. The registered manifest enforces Modeler not to
tamper fairness certificate or launch a different enclave since such

an attempt results in verification failure or attestation failure, re-

spectively. Therefore, Clients make sure that they use a certified

fair model by verifying the integrity of Modeler’s inference en-

clave, which embeds the signing certificate chain. This chain of

trust starting from the Regulator’s certificate ensures the fairness
of model. Note that a certificate issued by Regulator is available
in public, thus, each data owner can similarly validate the model’s

fairness after the deployment of the certified inference enclave.

D5. In-enclave compilation with ML toolchain and sandbox-
ing (T1,T2,T6) Combining enclave attestation with state-of-the-art

enclave sandboxing techniques [27, 28] mediates the second is-

sue. Based on a compiler-based instrumentation [61], malicious

attempts to reveal Clients’ data in the inference enclave (T6) is
confined as the enclave sandboxing based on software fault isola-

tion (SFI) guarantees thatModeler’s enclave cannot leak training

data in an unintended purpose. Meanwhile, public scrutiny is also

required to audit the inference procedure, similar to verifying the



WWW ’22, April 25–29, 2022, WWW, Lyon Saerom Park, Seongmin Kim, and Yeon-sup Lim

correctness of fairness auditing enclave. For this, our framework

takes attestation strategy [27, 65] that separates the ML inference

codebase into two parts as Figure 2 shows: public in-enclave part to

be attested and private part to achieve model confidentiality. The

codes related to ML toolchain and enclave sandboxing are opened

to clients, while an enclave utilizes model parameters and a training

algorithm to be involved in runtime compilation generated by the

ML toolchain. Modeler’s sensitive data becomes outside the scope

of attestation as an enclave dynamically loads and consumes it to

generate an inference code. Then, Clients attest the integrity of

ML toolchain and sandbox, both of which are not specific to the

proprietary model and publicly auditable whether it deliberately

leaks sensitive information. Such design choice explicitly spells out

what Clients have to trust, whileModeler keeps their secret private.

4.4 Data Aggregation
Our framework evaluates model fairness based on test data col-

lected from Owners through the aggregation enclave that pro-

tects data privacy using D1. After constructing the test data

D = {(𝑥1, 𝑦1, 𝑧1), . . . , (𝑥𝑁 , 𝑦𝑁 , 𝑧𝑁 )}, the aggregation enclave sends

D to the fairness auditing enclave. Although the main functionality

of the aggregation enclave is to collect test datasets, additional func-

tionalities can be easily implemented in our framework to handle

more concerns such as bias and poisoning of the test data.

First, the aggregation enclave can refine the test data to mitigate

the inherent bias of data. Note that collected datasets in the real

world might be biased; for example, many publicly available face

datasets are strongly biased in terms of race (toward Caucasian

faces) [9, 29]. Kärkkäinen and Joo [29] show that the trained model

with the biased dataset yields poor performance with new balanced

datasets. Similarly, such a bias can affect the results of fairness

evaluation. However, it is difficult for the existing studies on privacy-

preserving fairness certification [31, 36] to mitigate the bias in the

collected test data since their cryptographic tools do not allow data

inspection based on sensitive group information. In contrast, the

aggregation enclave can refine the test data while protecting the

privacy of data by using D1.
Next, the aggregation enclave can check whether the amount

of collected test data is enough to correctly evaluate fairness even

when data poisoning exists in the data. It is straightforward that

as the aggregation enclave collects more test data, the evaluation

becomes robust to data poisoning. The following A1 provides our

theoretical analysis that determines the minimum amount of test

data for correct fairness certification in the presence of data poison-

ing. Referring to this analysis, the aggregation enclave can estimate

the required amount of data according to fairness requirements and

examine whether the collected data is sufficient.

A1. Consideration of partially poisoned data (T3) Assume that

some Owners try to distract our fairness certification by manipulat-

ing the data they provide (data poisoning). Unlike the conventional

definition of data poisoning, whose target is a set of elements in

a data instance, we define data poisoning as flips of only sensitive

attributes in a data instance. The following proposition, which ex-

tends the claim based on (𝜖, 𝛿)-fairness in [54] , states the condition

on the corruption ratio 𝛼 to certify the classifier 𝑓 in terms of fair-

ness gap for the risk R𝑧 , where the flipping probability from 𝑧 to

𝑧′ is 𝑃 (𝑧′ |𝑧) ≤ 𝛼 1

|Z |−1 if ∀𝑧′ ≠ 𝑧 and 𝑃 (𝑧′ |𝑧) ≥ 1 − 𝛼 , otherwise.

Proposition 1. A classifer 𝑓 becomes (𝜖, 𝛿)-fair if the followings
are satisfied for any 0 < 𝛽 ≤ min𝑧′𝑚𝑧′

max𝑧′𝑚𝑧′
:

(a) 0 ≤ 𝐺 ( ˆD) < 𝜖 − 2𝛾 , where 𝛾 = 2𝛼
𝛽 (1−𝛼)+𝛼 .

(b) min𝑧′𝑚𝑧′ ≥ 2

(𝜖−𝐺 ( ˆD)−2𝛾 )2
ln

2 |Z |
𝛿

.

Proof. The proof is deferred to the Appendix A. □

Proposition 1 demonstrates that the empirical fairness gap of

poisoned dataset𝐺 (𝑅, ˆD) can be used to certify the (𝜖, 𝛿)-fairness of
the classifier 𝑓 when𝑚𝑧 satisfy the conditions. We can extend it to

other fairness notions by replacing the group risk R𝑧 (𝑓 ) under the
condition 𝑝 (𝑧′ |𝑧,𝑦) = 𝑝 (𝑧′ |𝑧) and𝑚𝑧,𝑦 = |D𝑧,𝑦 | for the subgroups
D𝑧,𝑦 = {(𝑥 ′, 𝑦′, 𝑧′) ∈ D : 𝑦′ = 𝑦, 𝑧′ = 𝑧}, as in [54].

5 EVALUATION
In this section, we demonstrate the efficacy and effectiveness of the

fairness certification through experiments using a real implementa-

tion in Intel SGX. Also, we validate the assumptions in Proposition

1 by inspecting a theoretical curve, and we show the empirical effect

of the corrupted group on fairness certification. We use five real-

world datasets which are popularly used in fair ML studies: Adult,
Bank, COMPAS, German and LSAC (The detailed explanation of

these datasets are given in Appendix B.1).

Implementation Setup: We implement our fair auditing enclave

by using Intel SGX [26], a representative commoditized TEE tech-

nology for x86 architecture. Among SGX-based enclave solutions,

we utilize sgx-lkl Open Enclave Edition [50] that supports various

programming language runtimes, including Python
1
. We evalu-

ate model certification time and inference time on Quad-core Intel

i7-10700K (3.80 GHz CPU,8 physical cores) with Ubuntu 18.04 and

Linux 5.4.0 version. Note that we run our experiments on Docker

container since containers are a common option for deploying and

managing confidential cloud services [37].

ML baselines: In this experiment, we use fairness-aware and

fairness-unaware methods as ML baselines. We train logistic regres-

sion (LR), support vector machine (SVM), and neural network (NN)

as fairness-unaware methods and fair logistic regression (FLR) [63]

and fair neural network (FNN) based on adversarial training [40]

as fairness-aware methods
2
. We expound the setting of these ML

models in Appendix B.

SGX overhead on fairness certification. The fairness audit
enclave calculates fairness metrics based on the prediction results

from the inference enclave. Thus, we measure computation times

of fairness metrics and inference times. First, we use FLR model to

measure the certification time in all five datasets. Table 1 shows the

evaluation results of fairness certification in the fairness auditing

enclave, where the numbers are the averages from 20 runs. The

values of accuracy and fairness metrics is given Table 3 in Appendix

1
SGX-LKL-OE is available at https://github.com/lsds/sgx-lkl (2021/11/17)

2
We use scikit-learn [48] for LR and SVM and Pytorch [47] for NN. The implementation

of fairness-aware methods is based on the python codes (FLR: https://github.com/

mbilalzafar/fair-classification, FNN: https://github.com/equialgo/fairness-in-ml)

https://github.com/lsds/sgx-lkl
https://github.com/mbilalzafar/fair-classification
https://github.com/mbilalzafar/fair-classification
https://github.com/equialgo/fairness-in-ml
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Table 1: The computation time of fair logistic regression (FLR) model certification with or without SGX, where DI, OMR, FPR
and FNR denote fairness notions defined in §2.1

Dataset Certification time (msec) Certification time w/ SGX (msec) (Overhead (%))

DI OMR FPR FNR DI OMR FPR FNR

Adult 108 108 109 109 119 (9.5%) 116 (7.8%) 118 (7.9%) 117 (7.6%)

Bank 101 100 101 101 109 (8.1%) 107 (6.4%) 109 (7.3%) 109 (7.5%)

COMPAS 16.1 16.0 16.1 16.2 20.8 (29%) 17.4 (8.9%) 17.4 (8.1%) 17.2 (6.4%)

German 2.45 2.42 2.44 2.45 3.09 (26%) 3.07 (26%) 3.01 (23%) 3.04 (24%)

LSAC 59.4 59.1 59.5 59.4 67.5 (14%) 62.6 (6.0%) 63.8 (7.3%) 63.8 (7.3%)

0
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Figure 3: Consumed inference time

B.3. For large dataset such as Adult and Bank, the computational

overhead is relatively small (6.4-9.5%) whileGerman dataset has the
highest overhead (23-25%). This is because the portion of the CPU

time consumed by SGX-related operations (e.g., paging and context

switching [33]) dominates the CPU time for fairness certification

as the size of the dataset becomes smaller. To demonstrate our

SGX-based fairness certification has a small overhead in practice,

we compare our results with respect to the existing MPC-based

fairness certification. Due to the limitation on reproducing the

MPC-based alternatives, we indirectly refer to the results given in

[31], where the MPC certification for disparate impact takes 250ms

for German and 802ms for Adult, respectively. Considering that

the MPC approach additionally incurs significant communication

overhead, we believe our proposed framework is more practical

than MPC-based certification.

In addition, we evaluate the inference times of LR, SVM, NN,

FLR and FNN two largest datasets, Adult and Bank, as described
in Table 2. Figure 3 shows the total inference time from loading

the model parameters to predicting the inference results. When

measuring the performance, we exclude the time for loading test

data. The difference between LR and FLR comes from whether

the intercept term is added in the data matrix (FLR) or not (LR).

Note that SGX provides near-native processor speed for compute-

intensive workloads [56]. As the model complexity of FLR and LR

is relatively low, the overhead of utilizing SGX becomes more dom-

inant than compute-intensive inference calculation, which leads to

1.66x-2.43x slowdown compared to the baseline. Because we use

the same network structure for the classifier in NN and FNN, the

inference time is the same (1.4x and 1.39 slowdown for Adult and
Bank, respectively). The SVM model needs matrix-matrix multi-

plication between the matrix of support vectors and input matrix

of test data, where the sizes of input matrices are 13, 567 × 50 and

13, 564 × 45, and the number of support vectors for Adult and Bank
is 11, 570 and 7, 242, respectively. As a result, SVM has the longest

inference time but moderate computational overhead (1.18x-1.19x

slowdown).

Theoretical curve with the corrupted group variable. In §4.2,

we discussed the model fairness certification when considering a

corruption attack of sensitive group variables. Figure 4 illustrates

the theoretical curves for the fairness gap of mis-classification

rate based on proposition 1. The curve is affected by 𝜖, 𝛿 in (𝜖, 𝛿)-

fairness, the corruption ratio 𝛼 and the group ratio 𝛽 . Figure 4 (a)

shows the theoretical curve for various parameter combinations of

𝛼 , 𝛽 , and 𝜖 denoted by 𝑎,𝑏 and 𝑒 , respectively, setting 𝛿 = 0.05 for

all cases. As a result, the fairness certification requires more test

data as the corruption or imbalance of sensitive group variables

deteriorates. Figure 4 (b) and (c) demonstrate the test results for the

fairness gap of mis-classification rate. To evaluate the certification

on real datasets, we trained fair logistic regression (FLR) models

for Bank and Adult datasets. The imbalance ratio 𝛽 of Bank and

Adult datasets is 0.67 and 0.48, respectively. We conducted the test

for 𝛼 = [0.0, 0.005, 0.001] and 𝜖 = 0.1. We found that Bank was able

to certify a fair model if the corruption ratio was small 𝛼 = 0.005

whereas Adult was not able to certify a fair model even if there

was no corruption of sensitive group. Thus, we ascertain that it is

significant to retain enough test samples to certify the fairness of

ML models, especially if assuming the existence of corruption.

6 RELATEDWORK
There have been a number of studies that discussed and addressed

algorithmic discrimination issues. They aimed to preprocess data

for fair-learning [13, 18], manipulate model predictions without

discrimination [25, 49], mitigate bias in a trained model [63, 64],

and verify/certify the fairness of machine-learning models [30, 53].

Based on these studies, there are toolkits implemented such as

AIF360 [11], FairLearn[12], Aequitas [53] and GerryFair [30]. Al-

though these toolkits support state-of-arts fairness algorithms and

metrics, they do not care about various security issues in imple-

menting practical services in some aspects. First, these toolkits

assume that all data and models are processed by a trusted party;

one should inspect and utilize the entire data to verify and certify

a machine-learning model with guaranteed fairness. These data

can include protected variables such as race and gender that users
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(a) Theoretical Curve (b) Bank dataset (c) Adult dataset

Figure 4: The illustration of certification condition in Proposition 1 for corruption ratio 𝛼 , group ratio 𝛽 and certification level 𝜖:
(a) theoretical curve for different parameters, (b)-(c) certification curve and empirical result of Bank dataset and Adult datasets

do not want to disclose, which can raise a significant privacy con-

cern. Second, the existing toolkits are not designed for a distributed

environment such as a cloud system, which has become one of

the popular platforms to provide machine-learning-based services.

Even though each functionality of the toolkits can be used for one

service component of the distributed system, they do not properly

consider security and privacy issues during required data exchange

for verifying and certifying models in terms of fairness.

An interesting line of work introduced trusted third parties to

help privacy-preserving FAML. Veale and Binns [60] discussed a

multi-party data governance model that a trusted third party is

enlisted to collect data on the protected attributes of training data.

They posit semi-honest modelers because the third party needs to

request the inference of the ML model to the modeler. In addition,

the trusted third party that has sensitive information can be a

target of attack. To resolve these problems, cryptographic tools

such as multi-party computation and homomorphic encryption

can be applied. Even though such approaches can provide data

privacy, they do not sufficiently satisfy requirements for practical

services. For example, Kilbertus et al. [31] and Segal et al. [54]

presented privacy-preserving fair certification and verification of

ML algorithms that protect sensitive variables and model secrecy

by using MPC. However, they postulate that both parties are semi-

honest (passive security) and online during computations with high

communication costs. In this study, we extend, explore and address

potential threats by designing a secure protocol and introducing

confidential computing in fair ML auditing.

Utilizing trusted processors to protect a training set and DL/ML

model becomes a major research direction in cloud computing.

The pioneered studies have focused on securely performing cloud-

assisted Deep Neural Network (DNN) inference [22, 24, 32, 35, 39,

51, 58], which improves the computational efficiency but suffers

from data privacy. By leveraging commodity CPU feature that sup-

ports hardware-protected isolated execution [26], the proposed

systems protect data owner’s privacy throughout the overall DL

inference procedure, while guaranteeing the protection against

information exposure problem and model stealing [22, 24, 27, 58];

performing system-level optimization to reduce the inference la-

tency [32, 39, 58]; improving scalability [67]; offering compatibility

by importing Tensorflow into hardware-based memory region with-

out modification [35, 51]. Starting from DNN inference, researchers

have leveraged TEE technology to achieve privacy-preserving fed-

erated learning[44, 65, 66], enabling secure but collaborative data

aggregation between multiple data owners. Also, several studies

enhance the security of training and inference procedures running

on the trusted processor by leveraging data obliviousness to defend

against data-dependent access pattern leakage for machine learn-

ing [46], DNN inference [21], and XGBoost [37]. However, none

of the previous studies has considered how to securely audit the

fairness of the training model and certify the result.

7 DISCUSSION AND CONCLUSION
In this work, we propose a novel fair auditing framework incor-

porating confidential computing technology to address security

issues such as privacy, confidentiality, and trustworthiness. Our

framework is flexible for various fairness metrics and extendable for

various ML models while still preventing security breaches, which

helps integrate the fairness assessment into Web applications that

use ML models. By building the chain of trust through confidential

computing, our framework provides secure fairness certification

and verification of trained ML models. Therefore, our framework

is one of promising solutions for algorithmic fairness that does

not delegate to ML service providers or rely on legislature to drive

regulation.

Although we design our framework to consider various aspects

of threats and address them in fairness auditing, our framework

has several limitations: First, we do not provide an adaptive defense

method against data poisoning in the test dataset. We only theoreti-

cally analyze its impact and show that sufficient data collection can

mitigate it. Second, we do not consider possible attacks during the

inference phase. In future work, we will enhance our framework to

address such attacks.
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A PROOF SKETCH OF PROPOSITION 1
Suppose the poisoned dataset

ˆD =
⋃

𝑧∈Z ˆD𝑧 where each group

ˆD𝑧 has the flipped sensitive variable with the ratio at most 𝛼 and

| ˆD𝑧 | = �̂�𝑧 . For simplicity, 𝑅(𝑓 ,D) is denoted by 𝑅(D).

|𝑅(D𝑧) − 𝑅( ˆD𝑧) | =
����� 1
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{
𝑚𝑧∑︁
𝑖=1

I[𝑓 (𝑥𝑖 ) ≠ 𝑦𝑖 ]
}

− 1

�̂�𝑧


𝑚𝛼

𝑧∑︁
𝑖=1

I[𝑓 (𝑥𝑖 ) ≠ 𝑦𝑖 ] +
�̂�𝑧∑︁

𝑖=𝑚𝛼
𝑧 +1
I[𝑓 (𝑥𝑖 ) ≠ 𝑦𝑖 ]


�����

≤
�����( 1

𝑚𝑧
− 1

�̂�𝑧

) 𝑚𝛼
𝑧∑︁

𝑖=1

I[𝑓 (𝑥𝑖 ) ≠ 𝑦𝑖 ]
����� +

����� 1

𝑚𝑧

𝑚𝑧∑︁
𝑖=𝑚𝛼

𝑧 +1
I[𝑓 (𝑥𝑖 ) ≠ 𝑦𝑖 ]

�����
+

����� 1

�̂�𝑧

�̂�𝑧∑︁
𝑚𝛼

𝑧 +1
I[𝑓 (𝑥𝑖 ) ≠ 𝑦𝑖 ]

�����
≤

����� ( 1

𝑚𝑧
− 1

�̂�𝑧

)
𝑚𝛼
𝑧

����� + (
1 −

𝑚𝛼
𝑧

𝑚𝑧

)
+

(
1 −

𝑚𝛼
𝑧

�̂�𝑧

)
(∗∗)

where𝑚𝛼
𝑧 = ⌈𝑚𝑧 (1 − 𝛼)⌉.

We can simplify the equation (**) depending on the cases. The

cases can be as follows:

(i) 2

(
1 − 𝑚𝛼

𝑧

�̂�𝑧

)
≤ 2

(
1 − (1 − 𝛼)𝑚𝑧

�̂�𝑧

)
if𝑚𝑧 ≤ �̂�𝑧 .

(ii) 2

(
1 − 𝑚𝛼

𝑧

𝑚𝑧

)
≤ 2 (1 − (1 − 𝛼)) = 2𝛼 if𝑚𝑧 > �̂�𝑧 .

In the case (i), suppose that𝑚0 = min𝑧′𝑚𝑧′ and𝑚1 = max𝑧′𝑚𝑧′ .

Then,

𝑚𝑧

�̂�𝑧
≥ 𝑚0

�̂�0

≥ 𝑚0

(1 − 𝛼)𝑚0 + 𝛼𝑚1

≥ 𝛽

𝛽 (1 − 𝛼) + 𝛼
. (3)

because min𝑧
𝑚𝑧

�̂�𝑧
=

𝑚0

�̂�0

, considering the corruption method. By

applying (3) to the case (i), we can obtain:

|𝑅(D𝑧) − 𝑅( ˆD𝑧) | ≤
2𝛼

𝛽 (1 − 𝛼) + 𝛼
:= 𝛾, (4)

where 𝛾 > 2𝛼 . Using this relationship, we can obtain

|𝑅(D𝑧) − R𝑧 (𝑓 ) | ≥ |𝑅( ˆD𝑧) − R𝑧 (𝑓 ) | − |𝑅( ˆD𝑧) − 𝑅(D𝑧) |
≥ |𝑅( ˆD𝑧) − R𝑧 (𝑓 ) | − 𝛾 . (5)

Using Hoeffding’s inequality and (5) for any 𝑧 ∈ Z,

𝑃𝑟

[
|𝑅( ˆD𝑧) − R𝑧 (𝑓 ) | >

𝜖 −𝐺 ( ˆD)
2

]
= 𝑃𝑟

[
|𝑅(D𝑧) − R𝑧 (𝑓 ) | >

𝜖 − 2𝛾 −𝐺 ( ˆD)
2

]
≤ 2 exp

(
−𝑚𝑧

(𝜖 − 2𝛾 −𝐺 ( ˆD))2
2

)
≤ 𝛿

|Z| , (6)

Table 2: Description of real datasets

Dataset # of variables # of samples
Training Test

Adult 50 31,655 13,567

Bank 45 31,647 13,564

COMPAS 5 5,049 2,165

German 23 700 300

LSAC 9 18,585 7,966

where
𝜖−𝐺 ( ˆD)

2
> 𝛾 > 0 by the condition (a). Then,

𝑃𝑟

[
∃𝑧 ∈ Z : |𝑅( ˆD𝑧) (ℎ) − R𝑧 (𝑓 ) | >

𝜖 − 2𝛾 −𝐺 ( ˆD)
2

]
(7)

≤
∑︁
𝑧

𝑃𝑟

[
|𝑅( ˆD𝑧) (ℎ) − R𝑧 (𝑓 ) | >

𝜖 − 2𝛾 −𝐺 ( ˆD)
2

]
≤ 𝛿 (8)

Given that |R𝑧 (𝑓 ) − 𝑅(D𝑧) | ≤ 𝜖−2𝛾−𝐺 ( ˆD)
2

for 𝑧 = 𝑧0, 𝑧1,

|R𝑧0 (𝑓 ) − R𝑧1 (𝑓 ) | ≤ |R𝑧0 (𝑓 ) − 𝑅(D𝑧) |
+𝐺 ( ˆD) + 2𝛾 + |𝑅( ˆD𝑧1 ) − R𝑧1 (𝑓 ) | ≤ 𝜖.

Thus, max𝑧0,𝑧1∈Z |R𝑧0 (𝑓 ) − R𝑧1 (𝑓 ) | ≤ 𝜖 with confidence 1 − 𝛿 .

B EXPERIMENTAL DETAILS
B.1 Data Description
In §5, we used five real-world datasets: Adult, Bank, COMPAS,
German and LSAC. Table 2 contains information about the datasets

where each entire dataset was split into training and test data by

7 : 3. The Adult income dataset (Adult) [17] was originated from the

1994 US Census database, and its class label is whether the annual

income is above 50K/year or not
3
. We considered gender (male as

𝑧 = 1 and female as 𝑧 = 0) as a sensitive variable and did not use

‘race’ and ‘fnlwgt’ as input varables [62]. Also, we remove records

that has missing values. The Bank marketing dataset (Bank) [17]
has a class label which indicates whether the client subscribed a

term deposit
4
. We considered marital status as a binary sensitive

variable. The dataset was preprocessed to have 45 input variables,

by one-hot encoding all the categorical variables. The COMPAS

Recidivism Racial Bias dataset (COMPAS) [6] has a class label which
indicates whether a criminal defendant committed crimes after two

years
5
. We considered race as a binary sensitive variable, and the

dataset was preprocessed to have 5 input variables as in [63]. The

German credit dataset (German) [17] has a class label to predict

each applicant’s credit risk
6
. We considered gender as a binary

sensitive variable, and the dataset was preprocessed to have 23

input variables by one-hot encoding all the nominal variables. The

Law School Admission Council (LSAC) was collected from all of

the public law schools in the United States in July 2007
7
[7]. The

class label of LSAC is to predict the acceptance and rejection of

3
http://archive.ics.uci.edu/ml/datasets/Adult

4
https://archive.ics.uci.edu/ml/datasets/bank+marketing

5
https://github.com/propublica/compas-analysis

6
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)

7
http://www.seaphe.org/databases.php

http://archive.ics.uci.edu/ml/datasets/Adult
https://archive.ics.uci.edu/ml/datasets/bank+marketing
https://github.com/propublica/compas-analysis
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
http://www.seaphe.org/databases.php
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Table 3: The empirical fairness gap of real datasets, where
DI, OMR, FPR and FNR are defined in §2.1. The bold num-
bers indicate the best performance for each dataset and each
metric.

Dataset Methods Acc(%) Empirical Fairness Gap(%)
DI OMR FPR FNR

Adult

LR 84.56 17.44 12.31 7.73 5.18

SVM 84.90 16.98 12.43 6.52 4.86
NN 85.07 18.13 11.26 7.27 9.23

FLR 83.20 4.31 10.94 1.59 24.08

FNN 75.32 2.82 2.76 10.07 24.08

Bank

LR 90.26 2.25 2.79 0.93 2.73

SVM 89.33 0.80 4.17 0.72 4.27

NN 89.87 2.04 2.75 0.63 0.49
FLR 83.74 1.19 2.87 1.43 0.57

FNN 89.04 0.11 2.65 0.26 1.15

COMPAS

LR 66.97 20.78 4.73 11.32 25.69

SVM 66.84 18.81 3.07 9.80 23.28

NN 67.67 19.01 4.54 9.42 23.80

FLR 56.58 0.99 0.05 3.69 4.19
FNN 57.69 17.54 3.48 16.61 15.59

German

LR 79.33 0.00 11.67 16.78 0.95

SVM 78.00 0.42 7.92 9.21 3.89

NN 79.00 3.33 5.00 5.24 3.25

FLR 78.00 5.83 14.17 25.29 3.89

FNN 69.33 0.00 15.83 0.00 0.00

LSAC

LR 82.48 1.53 1.08 4.35 0.35

SVM 80.02 0.00 2.13 0.00 0.00
NN 83.02 1.39 1.77 2.14 0.68

FLR 81.89 0.58 0.66 3.36 0.51

FNN 81.53 1.46 1.15 4.12 0.37

law applicants. We used 10 input variables, considered gender as a

sensitive variable and did not use ‘race’ as an input variables.

B.2 ML Model Details
To evaluate our fairness certification framework, we use LR, SVM,

NN, FLR, and FNN. We need to set some hyperparameters for ML

methods except for LR. For SVM model, we used the linear ker-

nel. For FLR, we minimize the loss function subject to the fairness

constraint based on the covariance metric for DI [63] while setting

the threshold of constraint to 0.0 (perfect fairness). For both NN

and FNN, we use 4-layer NNs as classifiers, where each hidden

layer consists of 32 hidden nodes with the ReLU activation, and

dropout in the training data, and the last layer has a single node

with the sigmoid activation. Also, we use the binary cross entropy

loss function. FNN consists of two NNs: a classifier network and

an adversary network that predicts the sensitive attribute values

from the predicted output of the classifier. We use the 4-layer NN

that has 3 hidden layers with 32 hidden nodes and ReLU activa-

tion and output layer with a single output and sigmoid activation.

After pre-training classifier and adversary network for 5 epochs,

the adversary network is trained for 50 epochs while training the

classifier on a single batch for each epoch as in [40]. The balance

parameter between the classifier’s loss and the adversary network’s

loss is set 100.0.

B.3 Additional Evaluation Results
Table 3 shows the evaluation results of LR, SVM, NN, FLR and FNN

on four real datasets. The empirical fairness gap is calculated the

difference of performance metrics between the worst group and the

best group. We have found that the best model can vary depend-

ing on what kind of fairness metrics we need to consider. Some

researchers have studied the trade-off between fairness and accu-

racy [15, 16, 34] and the possibility of inconsistent relationships

between multiple fairness criterion [34, 49]. Therefore, multidis-

ciplinary studies are needed to achieve social consensus on how

to construct fairness certification standards in various practical

applications of ML models.
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