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ABSTRACT
The hardware security module (HSM) has been used as a
root of trust for various key management services. At the
same time, rapid innovation in emerging industries, such as
container-based microservices, accelerates demands for scal-
ing security services. However, current on-premises HSMs
have limitations to afford such demands due to the restricted
scalability and high price of deployment. This paper presents
ScaleTrust, a framework for scaling security services by uti-
lizing HSMs with SGX-based key management service (KMS)
in a collaborative, yet secure manner. Based on a hierarchi-
cal model, we design a cryptographic workload distribution
between HSMs and KMS enclaves to achieve both the elas-
ticity of cloud software and the hardware-based security of
HSM appliances. We demonstrate practical implications of
ScaleTrust using two case studies that require secure crypto-
graphic operations with low latency and high scalability.

CCS CONCEPTS
• Security and privacy→ Systems security;

1 INTRODUCTION
The hardware security module (HSM) has been utilized as
a root of trust to secure numerous cloud applications and
network transactions. An HSM protects cryptographic key
operations such as signing certificates by supporting secure
physical separation for the key management. HSMs have
been widely deployed for the online services that require se-
cure key management such as certificate authorities (CAs) in
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public key infrastructure (PKI) environment [2], e-commerce
payment system [22], and DNSSEC [21].
At the same time, rapid innovation in emerging indus-

tries, such as container-based microservices, edge comput-
ing, and financial technology, accelerates demands for scal-
ing security services. For example, traditional cloud mono-
lithic applications are divided into multiple microservices to
achieve high deployability and modifiability [20, 32]. Recent
applications and web services take edge-friendly designs
in a distributed manner to deal with numerous mobile and
IoT transactions for low-latency. This trend dramatically
increases both user-to-service transactions and service-to-
service transactions which need to be cryptographically se-
cured. This, however, introduces a heavy burden on HSMs.
The fundamental problem of an on-premises HSM is its

limited scalability [16, 18]. Because operations related to
secret keys are only conducted by the dedicated hardware,
the throughput of cryptographic requests is affected by the
resource utilization of an HSM and its network status, which
can be a bottleneck of large-scale services. However, de-
ploying HSMs in large-scale introduces a significant capital
investment. Even a cloud-based HSM [2, 5] is quite costly:
AWS Cloud HSM [2] and IBM Cloud HSM [5] charge $1,168,
and $1,250 per month, respectively.

An alternative is to use a software-based key management
service (KMS) by leveraging a commodity trusted execution
environment (TEE) [16, 18]. Intel SGX [27] offers an isolated
execution inside a secure enclave with native performance.
Because the SGX functionality is available on x86 CPUs,
it is cost-effective and easy to deploy at large scale, com-
pared to the HSM. However, this approach does not provide
hardware separation required by regulation [24], unlike the
HSM. For example, Canadian and U.S. federal governments
have regulations to validate compliance with the FIPS 140-2
standard [14] by the law. The FIPS certification above level
2 [29] mandates physical separation and enterprises often
use on-premises HSMs to meet the requirement.
However, a naïve combination of HSMs and TEE-based

KMS does not achieve both service scalability and security.
For example, handling frequent private key operations in
an HSM might introduce heavy computations, which makes
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Level Description Validated Technology Examples

Level 1 Requires production-grade equipment with externally tested algorithms including DES and AES WolfSSL-SGX [13]
Level 2 Satisfies the requirement for physical tamper-evidence and role-based authentication Self-Encrypting Drive (SED) storage [23]
Level 3 Satisfies the requirement for physical tamper-evidence and identity-based authentication on-premise HSMs [11]
Level 4 Has the ability to delete contents if it detects environmental attack such as supercooling on-premise HSMs [6]

Table 1: Four levels of FIPS 140-2 standard certification.

Product Vendor Signing speed Price tps/$(RSA-2048) (USD)

SafeNet Luna SA A790 Gemalto 10,000 tps $29,900 0.33
nShield F2 6000+ nCipher 3,000 tps $12,560 0.24

Xeon E3-1280 v6 Intel 4,200 tps $500 8.4
Xeon E3-1280 v6 (SGX)* Intel 3,600 tps $500 7.2

Table 2: Specifications of commercial HSM products
and x86 CPUs in marketplace (*See §5).

the HSM becoming a performance bottleneck. Also, preserv-
ing chain-of-trust from an HSM to end users over untrusted
channels is non-trivial due to the lack of validation mecha-
nism between the HSM and the TEE-based KMS instances.
Therefore, a careful design considering both application char-
acteristics and security is required to utilize TEE with HSMs.
This paper explores practical implications of utilizing

HSMs with TEE-based KMS in a collaborative, yet secure
manner. We propose a workload distribution methodology
between HSMs and TEE-based KMS to achieve both the elas-
ticity of cloud software and the hardware-based security of
an HSM appliance. To achieve end-to-end security between
an HSM and end users, we design a secure key bootstrapping
mechanism and leverage SGX remote attestation for trust-
worthy deployment of KMS instances. Finally, we explore
the division of workload between HSMs and SGX enclaves
with new emerging applications in the microservice archi-
tecture and perform preliminary evaluation of JSON web
token authentication scenario.

2 BACKGROUND
HSM vs Traditional Software KMS. HSM appliances are
designed and certified to provide the highest level of physical
security. The hardware is intrusion-resistant and tamper-
evident against physical attacks. Because cryptographic op-
erations and key management are performed within isolated
hardware, an HSM has been used as a root of trust for various
key management services [2, 21, 22]. Modern HSM devices
are powerful enough to operate thousands of cryptographic
operations per second [11, 28] and satisfy FIPS 140-2 [14]
level 3 or 4 standard shown in Table 1.
One core limitation of an HSM is the overhead of provi-

sioning an on-premises HSM due to its high price. Table 2
shows the prices and transactions per second (tps) of com-
mercial HSM products that meet FIPS 140-2 level 3 certifi-
cation. HSMs do not scale well because the performance is

restricted by hardware resource and network bandwidth. To
scale up the service, significant investments are needed for
deploying more HSMs. Recent network trends, such as edge
computing [33], offload cryptographic operations at the edge,
which may instantiate the need for a scalable infrastructure.

Software-based KMS for cloud environments [3, 12] com-
plements the limitations of HSM appliances. It takes the same
role with the HSM (e.g., centralized management of digital
keys), but more flexible and highly available by providing
SDK for application development and integration. Compared
to the HSM, software-based KMS scales horizontally to re-
duce its queuing delay. Despite the above benefits, it cannot
guarantee the physical separation of digital keys which is
required to meet FIPS 140-2 [14] level 3 or higher standard.
In fact, commodity software-based KMS solutions [3, 12] sup-
port HSM extensions as options to satisfy the demands to use
on-premises HSMs for regulatory compliance policies [24].
KMS utilizing TEE. Several market products target the
cloud environment and deliver key management service
based on commodity TEE technology [16, 18]. Fortanix re-
leased self-defending key management service (SDKMS) [16]
to achieve scalable data protection, secured by SGX enclaves.
To protect against enclave code vulnerabilities, the encryp-
tion module of SDKMS is implemented in Rust. Intel extends
Barbican that provides REST APIs for secure key manage-
ment in the Openstack environment to support SGX crypto
plugins [18]. It offers a secure multi-user key distribution
among third-party SGX enclaves by leveraging remote attes-
tation. Several studies leverage ARM TrustZone, a commodi-
tized TEE for embedded and mobile devices for credential-
based authentication [25] and key management service [26].
Existing approaches have focused on utilizing the TEE-based
crypto plugins as an alternative of HSMs to address the scal-
ability issue, which means that they do not preserve the
property of physical separation that on-premises HSMs give.

3 SYSTEM DESIGN
This section presents our framework called ScaleTrust, de-
signed to scale out cryptographic operations by utilizing
HSMs and SGX-enabled KMS in a collaborative, yet secure
manner. To achieve our design goal, a careful workload dis-
tribution between HSMs and SGX-enabled key management
modules is required. First, wewould like to avoid using HSMs
for frequent cryptographic computations. For example, stor-
ing all the session keys in HSMs may incur performance
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Figure 1: Design overview of ScaleTrust and its threat model.

bottleneck when many clients establish short-lived, but fre-
quent TLS connections. This might fail to satisfy service
level objectives (SLOs), such as the response time. Second,
we would like to store master secrets on hardware-isolated
HSMs. SGX-enabled key management modules cannot be the
last line to store master secrets because they cannot preserve
physical tamper-evidence, unlike the HSMs.
Threat model and deployment assumption.We assume
a powerful adversary who can control any software compo-
nents in untrusted platform, including OS and hypervisor.
HSM hardware itself protects secrets by isolating them in
separated hardware, but a communication channel with ex-
ternal hosts is untrusted, as an attacker takes full control
over the host OS and libraries. We assume that an HSM’s
root public key deployment to a trusted host is trustworthy
during the system bootstrapping time, and the HSM only
accepts requests encrypted with the key (See §3.2 for more
details). Also, we typically trust SGX enclaves, but our sys-
tem does not fully rely on the enclaves for key management
because they do not provide physical separation for stor-
ing keys. Finally, we assume that the SGX-enabled instances
for key management service are located between an HSM
and end users, following the generic deployment scenario of
software-based KMS [3, 12]. Note that we focus on guaran-
teeing forward secrecy after key deployments, and achieving
post-compromise security is beyond the scope of this paper.

3.1 Introducing Hierarchy for Scaling
To satisfy the above two requirements, we take a hierarchical
approach inspired by modern CA systems. Figure 1 shows
the overall architecture of ScaleTrust. ScaleTrust consists
of three main components: an HSM KMS server equipped
with HSM devices, a bootstrapping enclave, and an SGX
KMS server that launches multiple KMS enclaves. The HSM
plays the role of a root of trust and handles security-sensitive

cryptographic requests that should be performed in the phys-
ically separated hardware. The bootstrapping enclave is a
helper enclave that bridges trust from the HSM to the KMS
enclaves through secure bootstrapping (See §3.2). Lastly, the
SGX KMS server generates KMS enclaves that handle cryp-
tographic requests from clients. Based on the hierarchical
model, we explore a new design space of utilizing both HSMs
and SGX-enabled KMS to scale out security services.
HSM virtualization. Our framework supports fully func-
tional, but flexible HSM virtualization to accommodate multi-
tenancy and to increase workload density. Although some
commodity high-end HSM products support HSM partition-
ing [11], they only provide a small number of partitions with
limited hardware resource (e.g., 100 partitions with 32MB
memory [11]). Since SGX preserves memory protection be-
tween enclaves running in the same host, each KMS enclave
is cryptographically isolated and acts as an independent HSM
with its own access controls and security policies in richer
resource environments.
Flexible deployability and usability. The software archi-
tecture of ScaleTrust accommodates various deployment sce-
narios depending on the business model. It would be applica-
ble for various security services that rely on an SGX-enabled
key management service provided by not only a single pub-
lic cloud provider, but also a hybrid cloud. For example, a
service provider can utilize heterogeneous KMS enclaves
provided by multiple cloud providers such as Microsoft Ope-
nEnclave [9] and Google Asylo [1]. ScaleTrust also offers
better usability of key management service as the KMS en-
clave enables a service provider to provide crypto-agility
and to utilize various software cryptographic schemes (e.g.,
attribute-based encryption), not supported by a legacy HSM.
Workload distribution between SGXenclaves andHSMs.
ScaleTrust reduces the burden of HSMs by delegating fre-
quent cryptographic requests to multiple KMS enclaves in a
distributed manner. The HSM focuses on dealing with root
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key operations such as key derivation, rotation, and revo-
cation on the derived keys, and the KMS enclave handles
user requests for cryptographic operations such as signing,
encryption, decryption with the derived keys. During the
execution, the bootstrapping enclave monitors the workload
of each KMS enclave and launches additional KMS enclaves,
if necessary. In addition, KMS enclaves can be deployed to
different platforms to reduce the tail latency of distributed
clients or prevent the single-point-of-failure of a KMS server.
This takes advantages of software-based key management
which is on-demand, fault-tolerant, and highly scalable.

3.2 Security Guarantees in ScaleTrust
ScaleTrust provides better security for end users to explicitly
spell out which SGX instances they trust in practice, with-
out breaking the security guarantee of HSMs. Under our
threat model, an HSM does not have knowledge of which
enclaves are reliable due to the lack of validation mechanism
against SGX instances. For example, an attacker can launch
an emulated, but potentially malicious enclave to acquire
a derived key from an HSM, similar to man-in-the-middle
attacks. Note that such attack scenario is still valid in the
traditional HSM deployment once a communication chan-
nel between an end user and an HSM is compromised. To
address this problem, we design a secure key bootstrapping
mechanism and leverage SGX remote attestation primitive.
Secure bootstrapping. To establish secure channels be-
tween an HSM and KMS enclaves, ScaleTrust performs a
secure bootstrapping procedure for sharing the HSM’s root
public key with the enclaves. First, a service provider gen-
erates a root asymmetric key pair in the HSM and retrieves
the root public key only. Next, the service provider embeds
the root public key in a bootstrapping enclave code as fixed
data and launches the enclave in the trusted host. Note that
the key deployment process must be done in a secure way
(e.g., offline distribution). During the initialization of KMS
enclaves, the bootstrapping enclave deploys the root public
key only to the valid KMS enclaves that pass SGX remote
attestation. Since the deployed key is only shared between
the HSM and the enclaves, it enables them to perform mu-
tual attestation for mitigating remote attacks on HSMs [15].
Finally, each KMS enclave establishes a secure channel with
the HSM by encrypting session data using the root public
key and decrypting it in the HSM using the root private key.
Attestation on SGX instances. ScaleTrust performs two
types of remote attestation to achieve end-to-end security
guarantee between an HSM and end users. First, the boot-
strapping enclave verifies the integrity of KMS enclaves
through remote attestation for a secure launch. This guar-
antees the root public key used for building secure channels
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Figure 2: Applying ScaleTrust to JWT
between the HSM and the KMS enclaves is correctly pro-
visioned. Another remote attestation procedure is done by
clients who would request cryptographic operations to KMS
enclaves to validate whether the launched enclaves are reli-
able. This attestation chain ensures that clients can sort out
which SGX instances are trustworthy.

4 APPLICATION CASE STUDIES
Achieving both elasticity of the TEE-based key management
and the strong physical separation guaranteed by HSM ap-
pliances, our system accommodates diverse use cases. We
present case studies for two different applications from the
real world, both of which require frequent cryptographic
operations with low latency and high scalability.

4.1 JSONWeb Token (JWT) Management
JSON Web Token (JWT) [17] supports token-based state-
less web authentication and is widely deployed to various
microservices [31]. Basically, the real world authentication
services provide two types of JWT: 1) an access token for
authenticating a user and 2) a refresh token for obtaining
a new access token when the previous access token is ex-
pired. An access token has a shorter lifetime (few hours)
than refresh token lifetime (more than a week or permanent).
For ensuring the integrity of JWT contents, JWT requires
a digital signature using cryptographic operations such as
RSA signing. However, as the number of microservices and
users increases, the burden of authentication services will
also increase, which might incur performance degradation.

ScaleTrust provides a cost-effective solution by workload
distribution between HSMs and KMS enclaves, considering
the JWT characteristics. Figure 2 shows ScaleTrust design
for JWT signing. To build JWT system for a microservice, a
ScaleTrust HSM generates a key pair for signing a refresh
token and sends the generated public key to the target KMS
enclaves which are allocated to create access tokens. Then,
the KMS enclave checks the validity of the incoming user’s
refresh token using the provided public key. If the refresh
token is valid, the KMS enclave generates an asymmetric
key pair or a secret for signing a new access token. Finally,
the KMS enclave shares the generated public key or the
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secret with the microservice. Note that refresh token signing
requests only occur when a new microservice is created,
or the previous refresh token is expired, which are much
less frequent than access token signing requests made by the
microservice users. Therefore, ScaleTrust reduces the burden
of an HSM and supports trustworthy signing chain from the
refresh token to the access token.

4.2 Authentication between Microservices
Workload distribution of ScaleTrust is applicable for scaling
out authentication of benign microservice instances to pro-
tect service-to-service communications. To achieve a secure
channel between microservices, a recent container orches-
tration solution [8] utilizes Mutual Transport Layer Security
(MTLS). Before establishing MTLS session, microservices
rely on a CA service to retrieve certificates. The CA issues
a certificate when a microservice successfully verifies the
provisioned cryptographic hash of the self-signed root certifi-
cate and a shared secret for establishing MTLS session. This
means that the CA has to issue a certificate for each microser-
vice. However, compared to monolithic legacy applications,
a large number of microservice instances are dynamically
generated and terminated with short lifetime, which makes
authentication processes become a performance bottleneck.
Our system design can be adopted to solve the problem; KMS
enclaves deal with issuing short-lived credentials for MTLS
channel while HSMs manage the root certificate.

5 PRELIMINARY EVALUATION
Our preliminary evaluation answers below two questions:

• Does ScaleTrust enhance the end-to-end latency by
scaling out multiple enclaves?

• Does ScaleTrust provide cost-effective scalability com-
pared to traditional HSM appliances?

We evaluate ScaleTrust with the JWT authentication scenario
in §4.1. We use two machines (Quad-core Intel Xeon E3-
1280V6 3.90GHz CPU) for a JWT issue server and a client,
respectively. We use SoftHSM [10], a software emulation
framework for an HSM, and Intel SGX Linux SDK 2.5 [7] for
SGX implementation. For JWT access token signing, each
enclave and HSM performs the same SHA-256 with RSA-
2048 signing operations. The client running on a different
host is directly connected with the JWT issue server through
a 10Gbps LAN cable. We set 1 core pinning for SoftHSM to
emulate a real HSM appliance which has restricted resource
and for each KMS enclave to isolate CPU resource.
Latency improvement with scaling.We measure the re-
sponse time of each JWT issue server that utilizes either
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Figure 3: Response time of JWT issue server.
ScaleTrust KMS or a stand-alone HSM. For each run, a mi-
croservice client generates 1 k concurrent and total 10 k ac-
cess token requests to the server, and we increase the num-
ber of ScaleTrust KMS enclaves as 1, 2 and 4. Figure 3 shows
a CDF of each result. Scaling out more enclaves provides
faster response time by processing RSA signing workloads
in parallel. The JWT issue server with 4 SGX enclaves KMS
reduces 95 th-percentile response time by 56.3 % compared
to the stand-alone HSM KMS. This means that ScaleTrust
offers scalability on large-scale cryptographic workloads for
improving end-to-end performance.
Cost-effective scaling.We evaluate the cost effectiveness
of a commercial HSM and our KMS enclave by comparing
the signing throughput. A single KMS enclave on Xeon E3-
1280V6 CPU ($500 cost) performs 3,600 tps for SHA-256 with
RSA-2048 signing operations. On the other hand, a Luna
SA A790 HSM ($29,900 cost) is capable to process 10,000 tps
for RSA-2048 signing (See Table 2). We compare the tps
per dollar, and the result shows that the KMS enclave gives
7.2 tps/$, while the HSM has 0.33 tps/$. Also, cloud-based
HSMs such as IBM [5], Amazon [2], and Google [4] charge
significant payment to a service provider for each crypto
operation or per month basis (e.g., $1,250 for IBMCloud HSM
service). Therefore, ScaleTrust is cost effective compared to
existing on-premises HSMs or cloud-based solutions.

6 DISCUSSION
Physical isolation with Intel VCA. Recently, Intel intro-
duces Visual ComputeAccelerator (VCA) [19], a PCI-attached
co-processor (or accelerator) that allows cloud providers to
extend the capability of graphics computation. Although
VCA accelerators are originally designed for graphics com-
putation, it is shipped with three Xeon E3 processors that
provide the SGX feature, paving a promising way to scale
SGX applications on the legacy cloud providers having no
modern CPUs [19]. Since VCA is designed as a co-processor,
it provides a high-bandwidth, low-latency channel among
the cores inside the accelerator via sharedmemory, and to the
host cores via the PICe interface. Such physical separation
and the high speed communication channel are desirable
primitives to build scalable HSM services securely without
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replacing existing host CPUs in the current data center. We
believe that Intel VCA introduces new design choices in
our software architecture. For example, we can locate the
bootstrapping enclave in Intel VCA for reducing latency or
utilize Intel VCA as an alternative of HSM thanks to its phys-
ical separation. We leave the detailed design and systematic
evaluation as future work.
Achieving Split Knowledge. ScaleTrust enables a secure
implementation of split knowledge. Split knowledge is a
method to distribute a cryptographic key to two or more
entities in pieces, ensuring that each of them only has a
knowledge of its own separated component and cannot de-
rive the original key. In general, service providers need to
ensure split knowledge on their payment services, follow-
ing the PCI requirement 3.6.6 [30]. Based on our system
design, we can accommodate split knowledge by allocating
each partial key to KMS enclaves, while an HSM securely
stores a complete secret key. Nevertheless, someone still wor-
ries that subversion of enclaves (e.g., side-channel attacks)
in a single platform might lead to the failure of achieving
split knowledge. Because ScaleTrust supports multiple-party
cloud platforms, a service provider can securely achieve split
knowledge by distributing each partial key into heteroge-
neous KMS enclaves running on different cloud platforms.

7 CONCLUSION
To address the limited scalability of HSMs, this paper ex-
plores a new design space to relieve the burden of HSMs
by leveraging a commodity TEE technology. We propose
ScaleTrust that utilizes HSMs and SGX enclaves in a hier-
archical model to improve performance, deployability, and
usability, while enhancing security guarantees compared to
legacy HSMs. Our case studies show that ScaleTrust can be
applied to security services in microservices that frequently
request cryptographic operations. Finally, our preliminary
evaluation shows that ScaleTrust improves end-to-end la-
tency and achieves cost-effective scaling.
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